Isolation and Identification of Phosphate Solubilizing Bacteria from Agricultural Soils of Modoji, Batagarawa, and Umaru Musa Yar'adua University of Katsina Metropolis

Authors

DOI:

https://doi.org/10.47430/ujmr.25101.002

Keywords:

Phosphate-Solubilizing Bacteria, Rhizosphere Soil, phosphate solubilization, Bacillus species, Pseudomonas, NBRIP

Abstract

Study’s Excerpt:
• The PSBs isolated in this study, Pseudomonas (91.7%) isolates were the predominant.
• The total rhizospheric bacterial count ranged from (6.84x10⁷ CFU/g - 12.20x10⁷CFU/g).
• The phosphate solubilization clearance zones ranged from 14.5 ± 0.5 mm – 27.0 mm.
• Statistically, significant difference was observed between the bacterial species ( F-Crit: 12.17, P-value: 0.0068,P≤ 0.05).
Full Abstract:
Phosphorus is the least mobile and available to plants in most soil conditions despite being abundant in organic and inorganic forms. Phosphate solubilizing bacteria (PSB) play an important role in supplying Phosphorus to plants in a more environmentally friendly and sustainable manner to circumvent phosphorus deficiency. This study aims to isolate and identify Phosphate solubilizing bacteria from the agricultural soils of Modoji, Batagarawa, and Umaru Musa Yar'adua University Katsina. The rhizosphere soil samples were taken from 4 distinct locations and serially diluted, and the pour plate method was employed. Gram reaction and subsequent biochemical tests for the isolates were conducted. Rhizospheric soil bacterial isolates were isolated and screened for phosphate solubilization using the National Botanical Research Institute’s phosphate growth medium (NBRIP) and Pikovskaya (PVK) medium. Results showed that total rhizospheric bacterial count ranged from (6.84x10⁷ CFU/g - 12.20x10⁷CFU/g). All twelve (12) isolates were found to be gram-negative: Pseudomonas sp. (91.7%) and Bacillus sp. (8.3%) and were observed to be positive for starch and gelatin hydrolysis test. The diameters of the phosphate solubilization clearance zones ranged from 14.5 ± 0.5 – 27.0 mm. It was concluded that these isolates can be used as plant growth-promoting agents and as biofertilizers in sustainable agriculture.

Downloads

Download data is not yet available.

References

Abbasi, A., Shahid, S., & Imtiaz, S. (2023). Micronutrients enrichments in legumes through agronomic and cultural practices. In Legumes biofortification (pp. 47-71). Springer. https://doi.org/10.1007/978-3-031-33957-8_3

Adeleke, R., Nwangburuka, C., & Oboirien, B. (2017). Origins, roles, and fate of organic acids in soils: A review. South African Journal of Botany, 108, 393-406. https://doi.org/10.1016/j.sajb.2016.09.002

Adnan, M., Fahad, S., Khan, I. A., Saeed, M., Ihsan, M. Z., Saud, S., Riaz, M., Wang, D., & Wu, C. (2019). Integration of poultry manure and phosphate solubilizing bacteria improved availability of Ca-bound P in calcareous soils. 3 Biotech, 9, 368. https://doi.org/10.1007/s13205-019-1894-2

Ahmad, A., Moin, S. F., Liaqat, I., Saleem, S., Muhammad, F., Mujahid, T., et al. (2022). Isolation, solubilization of inorganic phosphate, and production of organic acids by individual and co-inoculated microorganisms. Geomicrobiology Journal, 40(2), 111-121. https://doi.org/10.1080/01490451.2022.2124329

Ajayi, A. S. (2015). Land degradation and the sustainability of agricultural production in Nigeria: A review. Journal of Soil Science and Environmental Management, 6(9), 234-240.

Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., Arif, M. S., Hafeez, F., Al-Wabel, M. I., & Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environmental Science and Pollution Research, 24(14), 12700-12712. https://doi.org/10.1007/s11356-017-8904-x

Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8, 971. https://doi.org/10.3389/fmicb.2017.00971

Atlas, R. (2010). Handbook of microbiological media (4th ed.). CRC Press. https://doi.org/10.1201/EBK1439804063

Bakki, M., Banane, B., Marhane, O., Esmaeel, Q., Hatimi, A., Barka, E. A., Azim, K., & Bouizgarne, B. (2024). Phosphate-solubilizing Pseudomonas and Bacillus combined with rock phosphates promoting tomato growth and reducing bacterial canker disease. Frontiers in Microbiology, 15, Article 1289466. https://doi.org/10.3389/fmicb.2024.1289466

Banerjee, M. R., Yesmin, L., & Vessey, J. K. (2006). Plant growth promoting rhizobacteria as biofertilizers and biopesticides. In M. Rai (Ed.), Handbook of microbial biofertilizers (pp. 137-181). Haworth Press.

Bhagat, N., Raghav, M., Dubey, S., & Bedi, N. (2021). Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance. Journal of Microbiology and Biotechnology, 31(8), 1045-1059. https://doi.org/10.4014/jmb.2105.05009

Bisht, N., & Singh Chauhan, P. (2021). Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. IntechOpen. https://doi.org/10.5772/intechopen.94593

Bouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In D. Maheshwari (Ed.), Bacteria in agrobiology: Disease management (pp. 1-25). Springer. https://doi.org/10.1007/978-3-642-33639-3_2

Bouizgarne, B., Bakki, M., Boutasknit, A., Banane, B., El Ouarrat, H., Ait El Maalem, S., et al. (2023). Phosphate and potash solubilizing bacteria from Moroccan phosphate mines showing antagonism of bacterial canker agent and inducing effective tomato growth promotion. Frontiers in Plant Science, 14, 970382. https://doi.org/10.3389/fpls.2023.970382

Cárceles Rodríguez, B., Durán-Zuazo, V. H., Soriano Rodríguez, M., García-Tejero, I. F., Gálvez Ruiz, B., & Cuadros Tavira, S. (2022). Conservation agriculture as a sustainable system for soil health: A review. Soil Systems, 6(4), 87. https://doi.org/10.3390/soilsystems6040087

Chen, J., Zhao, G., Wei, Y., et al. (2021). Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Scientific Reports, 11, 9081. https://doi.org/10.1038/s41598-021-88635-4

Chen, Q., & Liu, S. (2019). Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China. Frontiers in Microbiology, 10, Article e02171. https://doi.org/10.3389/fmicb.2019.02171

Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W.-A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1), 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002

Choudhary, M., Jat, H. S., Datta, A., Yadav, A. K., Sapkota, T. B., Mandol, S., Meena, R. P., Sharma, P. C., & Jat, M. L. (2018). Sustainable intensification influences soil quality, biota, and productivity in cereal-based agroecosystems. Applied Soil Ecology, 126, 189-198. https://doi.org/10.1016/j.apsoil.2018.02.027

Damo, J. L. C., Ramirez, M. D. A., Agake, S. I., Pedro, M., Brown, M., Sekimoto, H., Yokoyama, T., Sugihara, S., Okazaki, S., & Ohkama-Ohtsu, N. (2022). Isolation and characterization of phosphate-solubilizing bacteria from paddy field soils in Japan. Microbes and Environments, 37(2), ME21085. https://doi.org/10.1264/jsme2.ME21085

Ducousso-Détrez, A., Lahrach, Z., Fontaine, J., Lounès-Hadj Sahraoui, A., & Hijri, M. (2024). Cultural techniques capture diverse phosphate-solubilizing bacteria in rock phosphate-enriched habitats. Frontiers in Microbiology, 15, 1280848. https://doi.org/10.3389/fmicb.2024.1280848

Edison, T. E., Cruz, D., Martin, J., & Torres, O. (2012). Gelatin hydrolysis test protocol. American Society for Microbiology, 1(1), 1-10.

Elias, F., Woyessa, D., & Muleta, D. (2016). Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. International Journal of Microbiology, 2016, Article 5472601. https://doi.org/10.1155/2016/5472601

Farssi, O., Saih, R., Moukhtari, A. E., Oubenali, A., Mouradi, M., Lazali, M., Ghoulam, C., Bouizgaren, A., Berrougui, H., & Farissi, M. (2021). Synergistic effect of Pseudomonas alkylphenolica PF9 and Sinorhizobium meliloti Rm41 on Moroccan alfalfa population grown under limited phosphorus availability. Saudi Journal of Biological Sciences, 28(7), 3870-3879. https://doi.org/10.1016/j.sjbs.2021.03.069

Gabriela Mihalache, Maria-Magdalena Zamfirache, Marius Mihasan, Iuliu Ivanov, Marius Stefan, & Lucian Raus. (2018). Phosphate solubilizing bacteria from runner bean rhizosphere and their mechanism of action. Romanian Biotechnological Letters, 23(4), 13853-13861.

Ghorbanzadeh, N., Mahsefat, M., Farhangi, M., Rad, M. K., & Proietti, P. (2020). Short-term impacts of pomace application and Pseudomonas bacteria on soil available phosphorus. Biocatalysis and Agricultural Biotechnology, 28, Article 101742. https://doi.org/10.1016/j.bcab.2020.101742

Gomes, E. A., Souza, F. A. de, Sousa, S. M. de, Vasconcelos, M. J. V. de, Marriel, I. E., & Silva, U. C. da. (2010). Prospecção de comunidades microbianas do solo ativas no aproveitamento agrícola de fontes de fósforo de baixa solubilidade (Vol. 107). Embrapa Milho e Sorgo. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/883157

Goswami, M., Malakar, C., & Deka, S. (2020). Rhizosphere microbes for sustainable maintenance of plant health and soil fertility. In Rhizosphere microbes: Soil and plant functions (pp. 35-72). Springer. https://doi.org/10.1007/978-981-15-9154-9_2

Hanif, M. K., Hameed, S., Imran, A., Naqqash, T., Shahid, M., & Van Elsas, J. D. (2015). Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.). Frontiers in Microbiology, 6, 583. https://doi.org/10.3389/fmicb.2015.00583

Harmanjit Kaur, Rakeeb Ahmad Mir, Sofi Javed Hussain, Bhairav Prasad, Pankaj Kumar, Becky N. Aloo, Chandra Mohan Sharma, & Ramesh Chandra Dubey. (2024). Prospects of phosphate solubilizing microorganisms in sustainable agriculture. World Journal of Microbiology and Biotechnology, 40, 291. https://doi.org/10.1007/s11274-024-04086-9

Illmer, P., & Schinner, F. (1995). Solubilization of inorganic calcium phosphates: Solubilization mechanisms. Soil Biology and Biochemistry, 27(3), 257-263. https://doi.org/10.1016/0038-0717(94)00190-C

Jiang, H., Qi, P., Wang, T., Wang, M., Chen, M., Chen, N., et al. (2018). Isolation and characterization of halotolerant phosphate-solubilizing microorganisms from saline soils. 3 Biotech, 8, 461. https://doi.org/10.1007/s13205-018-1485-7

Jiang, Y., Zhao, X., Zhou, Y., & Ding, C. (2022). Effect of the phosphate solubilization and mineralization synergistic mechanism of Ochrobactrum sp. on the remediation of lead. Environmental Science and Pollution Research, 29, 58037-58052. https://doi.org/10.1007/s11356-022-19960-y

Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate-solubilizing microorganisms in sustainable agriculture: A review. Agronomy for Sustainable Development, 27(1), 29–43. https://doi.org/10.1051/agro:2006011

Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi: Current perspective. Archives of Agronomy and Soil Science, 56(1), 73-98. https://doi.org/10.1080/03650340902806469

Kour, D., Rana, K. L., Kaur, T., Yadav, N., Yadav, A. N., Kumar, M., Kumar, V., Dhaliwal, H. S., & Saxena, A. K. (2021). Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere, 31, 43-75. https://doi.org/10.1016/S1002-0160(20)60057-1

Krishnaveni, M. S. (2010). Studies on phosphate solubilizing bacteria (PSB) in rhizosphere and non-rhizosphere soils in different varieties of foxtail millet (Setaria italica). International Journal of Agriculture and Food Science Technology, 1, 23-39.

Lesueur, D., Deaker, R., Hermann, L., Brau, L., & Jansa, J. (2016). The production and potential of biofertilizers to improve crop yields. In Bioformulations: For sustainable agriculture (pp. 71-92). Springer. https://doi.org/10.1007/978-81-322-2779-3_4

Li, X., Luo, L., Yang, J., Li, B., & Yuan, H. (2015). Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2. Applied Biochemistry and Biotechnology, 175(6), 2755-2768. https://doi.org/10.1007/s12010-014-1465-2

Li, Z., Li, J., Liu, G., Li, Y., Wu, X., Liang, J., Wang, Z., Chen, Q., & Peng, F. (2025). Isolation, characterization and growth-promoting properties of phosphate-solubilizing bacteria (PSBs) derived from peach tree rhizosphere. Microorganisms, 13(4), 718. https://doi.org/10.3390/microorganisms13040718

Liu, M., Liu, X., Cheng, B. S., Ma, X. L., Lyu, X. T., Zhao, X. F., Ju, Y. L., Min, Z., & Fang, Y. L. (2016). Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers. Spanish Journal of Agricultural Research, 14(4), e1106. https://doi.org/10.5424/sjar/2016144-9714

Mengesha, A. S., & Legesse, N. H. (2024). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of lentil (Lens culinaris M.) collected from Hagere Mariam district, Central Ethiopia. PLoS ONE, 19(11), e0308915. https://doi.org/10.1371/journal.pone.0308915

Mitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking crop nutrition in times of modern microbiology: Innovative biofertilizer technologies. Frontiers in Sustainable Food Systems, 5, Article 606815. https://doi.org/10.3389/fsufs.2021.606815

Mujahid, T. Y., Siddiqui, K., Ahmed, R., Kazmi, S. U., & Ahmed, N. (2014). Isolation and partial characterization of phosphate-solubilizing bacteria isolated from soil and marine samples. Pakistan Journal of Pharmaceutical Sciences, 27(6), 1483-1490.

Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate-solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

Piokvskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiologia, 17, 362-370.

Radhakrishnan, R., & Lee, I. J. (2016). Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiology and Biochemistry, 109, 181-189. https://doi.org/10.1016/j.plaphy.2016.09.018

Rasul, M., Yasmin, S., Suleman, M., Zaheer, A., Reitz, T., Tarkka, M. T., et al. (2019). Glucose dehydrogenase gene containing phosphobacteria for biofortification of phosphorus with growth promotion of rice. Microbiological Research, 223-225, 1-12. https://doi.org/10.1016/j.micres.2019.03.004

Richard, P. O., & Ogunjobi, A. A. (2016). Effect of organic and inorganic fertilizer application on phosphate-solubilizing bacteria in the rhizosphere of maize. African Journal of Microbiology Research, 10(48), 2021-2028. https://doi.org/10.5897/AJMR2016.8318

Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 28(9), 897-906. https://doi.org/10.1071/PP01093

Salisu, B., & Isiya, S. (2024). Biofertilizer production using phosphate-solubilizing Pseudomonas species isolated from rhizosphere soil: Towards indigenous biofertilizer for enhanced crop productivity in Katsina, Nigeria. UMYU Journal of Microbiology Research, 9(1), 123-133. https://doi.org/10.47430/ujmr.2491.014

Satyaprakash, M., Nikitha, T., Reddi, E. U. B., Sadhana, B., & Satya Vani, S. (2017). Phosphorus and phosphate solubilizing bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Sciences, 6(4), 2133-2144. https://doi.org/10.20546/ijcmas.2017.604.251

Shrivastava, M., Srivastava, P., & D'souza, S. (2020). Phosphate-solubilizing microbes: Diversity and phosphate solubilization mechanism. In Role of rhizospheric microbes (pp. 137-165). Springer. https://doi.org/10.1007/978-981-13-0044-8_5

Silva, L. I. da, Pereira, M. C., Carvalho, A. M. X. de, Buttrós, V. H., Pasqual, M., & Dória, J. (2023). Phosphorus-solubilizing microorganisms: A key to sustainable agriculture. Agriculture, 13(2), Article 462. https://doi.org/10.3390/agriculture13020462

Sleeter, B. M., Loveland, T., Domke, G., Herold, N., Wickham, J., & Wood, N. (2018). Land cover and land-use change. In D. R. Reidmiller, C. W. Avery, D. R. Easterling, K. E. Kunkel, K. L. M. Lewis, T. K. Maycock, & B. C. Stewart (Eds.), Impacts, risks, and adaptation in the United States: Fourth National Climate Assessment (Vol. II, pp. 202-231). U.S. Global Change Research Program. https://doi.org/10.7930/NCA4.2018.CH5

Soni, R., & Keharia, H. (2021). Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. Planta, 254(3), Article 49. https://doi.org/10.1007/s00425-021-03695-0

Stanier, R. Y., Palleroni, N. J., & Doudoroff, M. (1966). The aerobic pseudomonads: A taxonomic study. Journal of General Microbiology, 43(2), 159-271. https://doi.org/10.1099/00221287-43-2-159

Suleman, M., Yasmin, S., Rasul, M., Yahya, M., Atta, B. M., & Mirza, M. S. (2018). Phosphate-solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLOS ONE, 13(9), e0204408. https://doi.org/10.1371/journal.pone.0204408

Sun, M., Ye, S., Xu, Z., Wan, L., & Zhao, Y. (2021). Endophytic Bacillus altitudinis Q7 from Ginkgo biloba inhibits the growth of Alternaria alternata in vitro and its inhibition mode of action. Biotechnology and Biotechnological Equipment, 35(1), 880-894. https://doi.org/10.1080/13102818.2021.1936639

Tao, G. S., Tian, S. J., Cai, M. Y., & Xie, G. H. (2008). Phosphate-solubilizing and -mineralizing abilities of bacteria isolated from soils. Pedosphere, 18, 515-523. https://doi.org/10.1016/S1002-0160(08)60042-9

Teles, E. A. P., Xavier, J. F., Arcênio, F. S., Amaya, R. L., Gonçalves, J. V. S., Rouws, L. F. M., Zonta, E., & Coelho, I. S. (2024). Characterization and evaluation of potential halotolerant phosphate-solubilizing bacteria from Salicornia fruticosa rhizosphere. Frontiers in Plant Science, 14, Article 1324056. https://doi.org/10.3389/fpls.2023.1324056

Uyi, O. G., Sani, B., Dunkwu-Okafor, A., Orole, O., Ejindu, G. C., Chuku, A., & Upla, P. U. (2024). Isolation and characterization of phosphate solubilizing bacteria from rhizosphere in Lafia metropolis. Lafia Journal of Science and Industrial Research, 2(1), 23-28. https://doi.org/10.62050/ljsir2024.v2n1.235

Vassileva, M., Vassilev, N., Fenice, M., & Federici, F. (2001). Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphate and P plant acquisition. Bioresource Technology, 79, 263-271. https://doi.org/10.1016/S0960-8524(01)00017-7

Velmurugan, S., Anokhe, A., & Kalia, V. (2021). Biochemical characterisation of starch hydrolysing bacteria. AgriCos e-Newsletter, 2, 63-65.

Wan, W., Qin, Y., Wu, H., Zuo, W., He, H., Tan, J., et al. (2020). Isolation and characterization of phosphorus-solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil. Frontiers in Microbiology, 11, Article 752. https://doi.org/10.3389/fmicb.2020.00752

Wang, Y., Peng, S., Hua, Q., Qiu, C., Wu, P., Liu, X., & Lin, X. (2021). The long-term effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Frontiers in Microbiology, 12, Article 693535. https://doi.org/10.3389/fmicb.2021.693535

Yahya, M., Islam, E. U., Rasul, M., Farooq, I., Mahreen, N., Tawab, A., et al. (2021). Differential root exudation and architecture for improved growth of wheat mediated by phosphate-solubilizing bacteria. Frontiers in Microbiology, 12, Article 744094. https://doi.org/10.3389/fmicb.2021.744094

Yahya, M., Rasul, M., Sarwar, Y., Suleman, M., Tariq, M., Hussain, S. Z., Sajid, Z. I., Imran, A., Amin, I., Reitz, T., Tarkka, M. T., & Yasmin, S. (2022). Designing synergistic biostimulants formulation containing autochthonous phosphate-solubilizing bacteria for sustainable wheat production. Frontiers in Microbiology, 13, 889073. https://doi.org/10.3389/fmicb.2022.889073

Yulianti, E., & Rakhmawati, A. (2017). Screening and characterization of phosphate-solubilizing bacteria from isolate of thermophilic bacteria. AIP Conference Proceedings, 1904(1), Article 020073. https://doi.org/10.1063/1.4995207

Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment, 612, 522-537. https://doi.org/10.1016/j.scitotenv.2017.08.095

Published

12-06-2025

How to Cite

Munir, Y. A., Muhammad, A. D., Muhammad, A. S., Bashir, A., Aliyu, S. H., Almustapha, H. B., Asababullah, S., Hussaini, M., Aliyu, A. J., & Hassan, D. (2025). Isolation and Identification of Phosphate Solubilizing Bacteria from Agricultural Soils of Modoji, Batagarawa, and Umaru Musa Yar’adua University of Katsina Metropolis. UMYU Journal of Microbiology Research (UJMR), 10(1), 12–20. https://doi.org/10.47430/ujmr.25101.002