Assessment of Antibacterial Potential of Cochlospermum tinctorium against Antibiotic-Resistant Bacteria Isolated from Raw Chicken Meat

Authors

DOI:

https://doi.org/10.47430/ujmr.25103.037

Keywords:

Cochlospermum tinctorium, Antibiotic Resistance, Antibacterial, Phytochemical Screening, Minimum Inhibitory concentration

Abstract

Study’s Excerpt:

  • Roots contained alkaloids, tannins, flavonoids, glycosides, and steroids.
  • Extract inhibited all multidrug-resistant isolates at 500 mg/mL.
  • Staphylococcus aureus showed highest inhibition (24.00 mm).
  • MIC ranged from 62.5 to 31.25 mg/mL; MBC from 125 to 62.5 mg/mL.
  • No significant difference in inhibition zones across bacteria tested.

Full Abstract:

The antibacterial activity of Cochlospermum tinctorium was determined in this study against Salmonella sp., Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, which were all antibiotic-resistant bacteria isolated from fresh chicken meat.  The roots of Cochlospermum tinctorium were processed, and extraction was done by maceration.  To determine the isolates' patterns of resistance and susceptibility to the antibiotics, antibiotic sensitivity testing was performed, while the disk diffusion method on Mueller Hinton Agar was used to assess the plant's antibacterial activity.  The minimum Inhibitory concentration (MIC) and minimum bacteriocidal concentration (MBC) were determined according to standard protocols.  All statistical analyses were performed using R.  The results showed all the bacterial isolates exhibited resistance to a number of widely used antibiotics: Septrin, Amoxicillin, Rocephin, Streptomycin, Sparfloxacin, Augmentin, Chloramphenicol, Ampicolox, Erythromycin.  The phytochemical screening reveals the presence of alkaloids, tannins, cardiac glycosides, flavonoids, and steroids.  Phytochemical screening revealed the presence of alkaloids, tannins, cardiac glycosides, flavonoids, and steroids.  These compounds are known for their antimicrobial properties, suggesting that the extract contains bioactive substances that may contribute to its antibacterial potential.  At a high concentration of 500 mg/mL, the extract of Cochlospermum tinctorium was effective in inhibiting all the isolates, with Staphylococcus aureus and Salmonella showing the highest zone of inhibition of 24.00mm and 23.00mm, respectively.  The lowest inhibition was observed at 62.5mg/mL with Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus exhibiting the lowest inhibition at 4.00 mm, 6.00 mm, and 7.00 mm, respectively.  The Minimum Inhibitory concentration (MIC) ranged from 62.5 to 31.25mg/mL for Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Salmonella, while the minimum bacteriocidal concentration (MBC) was between 125 and 62.5mg/mL.  Statistically, it shows no significant difference in the mean zone of inhibition of the plant extract against the bacterial isolates (F:0.22, F-crit: 3.24, P-value: 0.881, P>0.05).  Indicating the extract may have a broad but uniform antibacterial effect.  Further studies are recommended to explore its spectrum of activity, to identify the lead bioactive metabolite responsible for the antibacterial activity and its toxicological effect in biological organisms.

Downloads

Download data is not yet available.

References

Abd El Tawab, A. A., Maarouf, A. A., El-Hofy, F. I., & El-Said, A. A. (2015). Bacteriological studies on some foodborne bacteria isolated from chicken meat and meat products in Kaliobia Governorate. Benha Veterinary Medical Journal, 29(2), 47–59. https://doi.org/10.21608/bvmj.2015.31545

Abd El-Salam-Azza, S. (2014). Molecular detection of antimicrobial resistance for some foodborne pathogens [Ph.D. thesis, Faculty of Veterinary Medicine, Zagazig University].

Abdallah, E. M., Alhatlani, B. Y., de Paula Menezes, R., & Martins, C. H. G. (2023). Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era. Plants, 12(17), 3077. https://doi.org/10.3390/plants12173077

Abdaslam, S. A., Hassan, M. A., Kaheel, H. A., Abobaker, T. M., Alnourain, T. H., Hamdan, H. A., Gokul Shankar, S., & Thambirajah, J. (2014). Isolation of Escherichia coli O157 and other foodborne pathogens from meat products and their susceptibility to different antimicrobial agents. Current Research in Microbiology and Biotechnology, 2(3), 391–397.

Abdulaziz, R., Usman, M. H., Ibrahim, U. B., Tambari, B. M., Nafiu, A., Jumare, I. F., Said, M. A., & Ibrahim, A. D. (2019). Studies on the antibacterial activity and chemical composition of methanol extract of Cochlospermum tinctorium root. Asian Plant Research Journal, 2(3), 1–11. https://doi.org/10.9734/aprj/2019/v2i330049

Adzitey, F. (2015). Antibiotic resistance of Escherichia coli isolated from beef and its related samples in Techiman Municipality of Ghana. Asian Journal of Animal Sciences, 9(4), 233–240. https://doi.org/10.3923/ajas.2015.233.240

Aguilar-Guadarrama, A. B., & Rios, M. Y. (2018). Flavonoids, sterols and lignans from Cochlospermum vitifolium and their relationship with its liver activity. Molecules, 23(8), 1952. https://doi.org/10.3390/molecules23081952

Ahmed, T. S., Magaji, M. G., Yaro, A. H., Musa, A. M., & Adamu, A. K. (2011). Aqueous methanol extracts of Cochlospermum tinctorium (A. Rich) possess analgesic and anti-inflammatory activities. Journal of Young Pharmacists, 3(3), 237–242. https://doi.org/10.4103/0975-1483.83774

Akinloye, O. A., Ayankojo, A. G., & Olaniyi, M. O. (2012). Hepatoprotective activity of Cochlospermum tinctorium against carbon tetrachloride induced hepatotoxicity in rats. Journal of Biochemistry, 49(3). https://doi.org/10.5251/abjna.2011.2.9.1283.1288

Alain, K. Y., Oronce, D. L., Mahudro, Y., Pascal, A. D., Paul, T. F., Alain, A. G., & Koko, S. D. (2014). Chemical characterisation, antiradical and antibacterial activities of extracts of the root bark of Cochlospermum planchonii of Benin. Journal of Innovation and Applied Studies, 7(4), 1582–1589.

Ali, M. R., Faruque, O., Molla, M. T., Khanam, R., Mahmud, S., & Mohiuddin, A. K. M. (2020). Antibacterial activity of eight medicinal plants against multidrug-resistant Escherichia coli and Salmonella spp. isolated from broiler meat. Grassroots Journal of Natural Resources, 3(4), 28–48. https://doi.org/10.33002/nr2581.6853.03043

Ansari, A. R. M. I. H., Rahman, M. M., Islam, M. Z., Das, B. C., Habib, A., Belal, S. M. S. H., & Islam, K. (2014). Prevalence and antimicrobial resistance profile of Escherichia coli and Salmonella isolated from diarrheic calves. Journal of Animal Health and Production, 2(1), 12–15. https://doi.org/10.14737/journal.jahp/2014/2.1.12.15

Antarasen & AmlaBatra. (2012). Evaluation of antimicrobial activity of different solvent extracts of medicinal plant: Melia azedarach. International Journal of Current Pharmaceutical Research, 4(2), 67–73.

Aung, T. M., & Oo, P. P. (2020). Isolation and characterisation of Rhizobium from root nodules of Arachis hypogaea L. (Groundnut). Journal of The Myanmar Academy of Arts and Science, 18, 197–210.

Ayeni, M. J., Oyeyemi, S. D., Kayode, J., & Abanikanda, A. I. (2018). Phytochemical, proximate and mineral analyses of the leaves of Bambusa vulgaris L. and Artocarpus altilis L. Ghana Journal of Science, 59, 69–77. https://doi.org/10.4314/gjs.v59i1.6

Bamidele, O., Yakubu, A., Joseph, E. B., & Amole, T. A. (2022). Antibiotic resistance of bacterial isolates from smallholder poultry droppings in the Guinea Savanna zone of Nigeria. Antibiotics, 11(7), 973. https://doi.org/10.3390/antibiotics11070973

Bashir, A., Ado, A., & Alli, A. I. (2021). Determination of antibacterial activity of Psidium guajava leaf extract against bacteria isolated from mobile phones of Umaru Musa Yar'adua University, Katsina community. UMYU Journal of Microbiology Research, 6(1), 219–226. https://doi.org/10.47430/ujmr.2161.032

Bashir, M., Ibrahim, A., Bilyaminu, M., Ali, R. I., Isa, H., Sambo, K. H., & Ishaq, I. (2022). Phytochemical screening and antibacterial activity of leaf and stem bark extracts of Adansonia digitata on E. coli, S. aureus, and S. typhi. Microbes and Infectious Diseases, 3(1), 217–223. https://doi.org/10.21608/mid.2021.53939.1097

Cagnoli, G., Di Paolo, A., Bertelloni, F., Salvucci, S., Buccioni, A., Marzoni Fecia di Cossato, M., & Ebani, V. V. (2024). Occurrence of antimicrobial-resistant Enterococcus spp. in healthy chickens never exposed to antimicrobial agents in Central Italy. Antibiotics, 13(5), 417. https://doi.org/10.3390/antibiotics13050417

Clinical and Laboratory Standards Institute. (2021). Performance standards for antimicrobial susceptibility testing (31st ed.). CLSI supplement M100.

Datta, S., Akter, A., Shah, I. G., Fatema, K., Islam, T. H., Bandyopadhyay, A., Khan, Z. U. M., & Biswas, D. (2012). Microbiological quality assessment of raw meat and meat products and antibiotic susceptibility of isolated Staphylococcus aureus. Journal of Agricultural and Food Analytical Bacteriology, 2, 187–195. https://www.researchgate.net/publication/233920154

Davis, R., & Brown, P. D. (2016). Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. Journal of Medical Microbiology, 65(4), 261–271. https://doi.org/10.1099/jmm.0.000229

de Kraker, M. E., Stewardson, A. J., & Harbarth, S. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050? PLOS Medicine, 13(11), e1002184. https://doi.org/10.1371/journal.pmed.1002184

de Miranda Pedroso, T. F., Bonamigo, T. R., da Silva, J., Vasconcelos, P., Felix, J. M., Cardoso, C. A. L., ... & Trichez, V. D. K. (2019). Chemical constituents of Cochlospermum regium (Schrank) Pilg. root and its antioxidant, antidiabetic, antiglycation, and anticholinesterase effects in Wistar rats. Biomedicine & Pharmacotherapy, 111, 1383–1392. https://doi.org/10.1016/j.biopha.2019.01.005

Dewi, E., Nuzullian, D., & Rawanita, M. (2024). Characteristics of Staphylococcus aureus bacteria in student skin samples at Biology Department, Jabal Ghafur University. International Conference on Educational Technology and Social Science (ICOETS 2023), 102–107. https://doi.org/10.2991/978-2-38476-200-2_17

Dhama, K., Rajagunalan, S., Chakraborty, S., Verma, A. K., Kumar, A., Tiwari, R., & Kapoor, S. (2013). Food-borne pathogens of animal origin: Diagnosis, prevention, control and their zoonotic significance-A review. Pakistan Journal of Biological Sciences, 16, 1076–1085. https://doi.org/10.3923/pjbs.2013.1076.1085

Etuk, E. U., Francis, U. U., & Garba, I. (2009). Regenerative action of Cochlospermum tinctorium aqueous root extract on experimentally induced hepatic damage in rats. African Journal of Biochemistry Research, 3(1), 1–4. https://doi.org/10.5897/AJBR.9000205

Ezzat, M., Shabana, I. I., Mohammed-Gihan, M. O., & Abd El-Hak-Marwa. (2014). Molecular characterisation of pathogenic E. coli isolated from meat and their products. SCVMJ, 21(1), 103–113. https://doi.org/10.21608/scvmj.2014.76296

Fadare, J. O., Ogunleye, O., Iliyasu, G., Adeoti, A., Schellack, N., Engler, D., Massele, A., & Godman, B. (2019). Status of antimicrobial stewardship programmes in Nigerian tertiary healthcare facilities: Findings and implications. Journal of Global Antimicrobial Resistance, 17, 132–136. https://doi.org/10.1016/j.jgar.2018.11.025

FAO CountrySTAT. (2021, December 8). Nigeria CountrySTAT. http://nigeria.countrystat.org/search-and-visualize-data/en/

FAOSTAT. (2021, December 9). Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QCL

Gupta, C. L., Blum, S. E., Kattusamy, K., Druyan, D. T., Shapira, S., Krifucks, R., Zhu, O., Yong-Guan, Z., Zhou, X.-Y., Su, J.-Q., et al. (2021). Longitudinal study on the effects of growth-promoting and therapeutic antibiotics on the dynamics of chicken cloacal and litter microbiomes and resistomes. Microbiome, 9, 178. https://doi.org/10.1186/s40168-021-01130-2

Hassen, N. I., Badaluddin, N. A., Mustapha, Z., & Zawawi, D. D. (2022). Identification and prevention of microbial contaminants in Musa paradisiaca tissue culture. Malaysian Applied Biology, 51(5), 129–143. https://doi.org/10.55230/mabjournal.v51i5.2374

Hedman, H. D., Vasco, K. A., & Zhang, L. (2020). A review of antimicrobial resistance in poultry farming within low-resource settings. Animals, 10(2), 264. https://doi.org/10.3390/ani10020264

Hue, O., Allain, V., Laisney, M. J., Le Bouquin, S., Lalande, F., Petetin, I., Rouxel, S., Quesne, S., Gloaguen, P. Y., & Picherot, M. (2011). Campylobacter contamination of broiler caeca and carcasses at the slaughterhouse and correlation with Salmonella contamination. Food Microbiology, 28, 862–868. https://doi.org/10.1016/j.fm.2010.11.003

Islam, M. S., Sultana, R., Hasan, M. A., Alam, M. S., Sikdar, B., Kamaruzzaman, M., & Islam, M. A. (2020). Characterisation and biocontrol measures of Pseudomonas syringae pv. syringae associated with citrus blast disease. Vegetos, 33(3), 555–569. https://doi.org/10.1007/s42535-020-00138-1

Jodi, S. M., & Sani, N. A. (2022). Phytochemical and antibacterial activity of Cochlospermum tinctorium root powder against foodborne pathogens. FUDMA Journal of Sciences, 6(5), 146–153. https://doi.org/10.33003/fjs-2022-0605-1118

Johnson-Fulton, S. B., & Watson, L. E. (2018). Comparing medicinal uses of Cochlospermaceae throughout its geographic range with insights from molecular phylogenetics. Diversity, 10(4), 123. https://doi.org/10.3390/d10040123

Keita, K., Darkoh, C., & Okafor, F. (2022). Secondary plant metabolites as potent drug candidates against antimicrobial-resistant pathogens. SN Applied Sciences, 4, 209. https://doi.org/10.1007/s42452-022-05084-y

Khan, J. A., Irfan, A. M., Soni, S. S., Maherchandani, S., Soni, S. S., & Maherchandani, S. (2015). Antibiogram and multiple antibiotic resistance index of Salmonella enterica isolates from poultry. Journal of Pure and Applied Microbiology, 9(3), 2495–2500.

Klaharn, K., Pichpol, D., Meeyam, T., Harintharanon, T., Lohaanukul, P., & Punyapornwithaya, V. (2022). Bacterial contamination of chicken meat in slaughterhouses and the associated risk factors: A nationwide study in Thailand. PLOS ONE, 17(6), e0269416. https://doi.org/10.1371/journal.pone.0269416

Lamada-Hanan, M., Nassif-Marionette, Z., & Eleiwa-Nesreen, Z. (2012). Microbiological evaluation of some chicken meat and meat products. Egyptian Journal of Agricultural Research, 90(1), 279–293. https://doi.org/10.19026/crmb.2.391

Madivoli, E. S., Maina, E. G., Kairigo, P. K., Murigi, M. K., Ogilo, J. K., Nyangau, J. O., & Kipyegon, C. (2018). In vitro antioxidant and antimicrobial activity of Prunus africana (Hook. f.) Kalkman and Harrisonia abyssinica Oliv. extracts (bark extracts): A comparative study. Journal of Medicinal Plants for Economic Development, 2(1), 35. https://doi.org/10.4102/jomped.v2i1.35

Magaji, M. G., Shehu, A., Sani, M. B., Musa, A. M., Yaro, A. H., & Ahmed, T. S. (2010). Biological activities of aqueous methanol leaf extracts of Cochlospermum tinctorium A. Rich. Nigerian Journal of Pharmaceutical Sciences, 1, 36–43.

Magashi, A. M., & Abdulmalik, U. (2018). Antibacterial activity and phytochemical screening of stem bark extracts of Adansonia digitata on some clinical isolates. UMYU Journal of Microbiology Research (UJMR), 3(1), 1–7. https://doi.org/10.47430/ujmr.1831.001

Manjunath, G. N., Prakash, R., & Vamseedhar Annam, K. S. (2011). Changing trends in the spectrum of antimicrobial drug resistance pattern of uropathogens isolated from hospitals and community patients with urinary tract infections in Tumkur and Bangalore. International Journal of Biological & Medical Research, 2(2), 504–507.

Mehdi, Y., Létourneau-Montminy, M.-P., Gaucher, M.-L., Chorfi, Y., Suresh, G., Rouissi, T., Brar, S. T., Cote, C., Ramirez, A. A., & Godbout, S. (2018). Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition, 4(2), 170–178. https://doi.org/10.1016/j.aninu.2018.01.002

Mthembu, T. P., Zishiri, O. T., & El Zowalaty, M. E. (2019). Molecular detection of multidrug‐resistant Salmonella isolated from livestock production systems in South Africa. Infection and Drug Resistance, 12, 3537–3548. https://doi.org/10.2147/IDR.S211618

Muhammad, J., Bako, G. D., Dogara, U. P., Musa, B., & Jeremiah, J. (2024). Antibacterial susceptibility pattern of bacteria isolated from ready-to-eat lettuce and Gurasa sold within Kaduna State University (Main Campus), Kaduna State. UMYU Journal of Microbiology Research (UJMR), 9(3), 187–193. https://doi.org/10.47430/ujmr.2493.022

Musa, A. A. (2012). Cytotoxicity activity and phytochemical screening of Cochlospermum tinctorium Perr. ex A. Rich rhizome. Journal of Applied Pharmaceutical Science, 2(7), 155–159. https://doi.org/10.7324/JAPS.2012.2723

Ndouyang, C. J., Kaptso, G., Nguimbou, R. M., Scher, J., Gaiani, C., & Facho, B. (2018). Relationship between secondary metabolites, antiradical activities, and colour characteristics of Cochlospermum tinctorium A. Rich. (Bixaceae) Root. Ghana Journal of Science, 59, 79–92. https://doi.org/10.4314/gjs.v59i1.7

Oluwasile, B. B., Agbaje, M., Ojo, O. E., & Dipeolu, M. A. (2014). Antibiotic usage pattern in selected poultry farms in Ogun state. Sokoto Journal of Veterinary Sciences, 12, 45–50. https://doi.org/10.4314/sokjvs.v12i1.7

Omemu, A. M., Okafor, U. I., Obadina, A. O., Bankole, M. O., & Adeyeye, S. A. O. (2018). Microbiological assessment of maize ogi cofermented with pigeon pea. Food Science & Nutrition, 6(5), 1238–1253. https://doi.org/10.1002/fsn3.65

Özçelik, B., Kartal, M., & Orhan, I. (2011). Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharmaceutical Biology, 49(4), 396–402. https://doi.org/10.3109/13880209.2010.519390

Ribeiro, J., Silva, V., Monteiro, A., Vieira-Pinto, M., Igrejas, G., Reis, F. S., Barros, L., & Poeta, P. (2023). Antibiotic resistance among gastrointestinal bacteria in broilers: A review focused on Enterococcus spp. and Escherichia coli. Animals, 13(8), 1362. https://doi.org/10.3390/ani13081362

Rosina, K., Islam, B., Mohd, A., Shazi, S., Anis, A. S., Manazir, A., Mashiatullah, S., & Asad, U. K. (2009). Antimicrobial activity of five herbal extracts against multidrug-resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules, 14(2), 586–597. https://doi.org/10.3390/molecules14020586

Roth, N., Käsbohrer, A., Mayrhofer, S., Zitz, U., Hofacre, C., & Domig, K. J. (2019). The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poultry Science, 98, 1791–1804. https://doi.org/10.3382/ps/pez072

Samba, N., Barrios, A. M., De León, E. G., Raposo, C., Lahlou, R. A., Curto, J., Rodilla, J. M., Roncero, A. M., Diez, D., & Silva, L. (2025). Cochlospermum angolense Welw ex Oliv: Phytochemical Profile, Antioxidant Activity, and Therapeutic Prospects. Molecules, 30(13), 2768. https://doi.org/10.3390/molecules30132768

Sanderson, H., Fricker, C., Brown, R. S., Majury, A., & Liss, S. N. (2016). Antibiotic resistance genes as an emerging environmental contaminant. Environmental Reviews, 24, 205–218. https://doi.org/10.1139/er-2015-0070

Santhi, K., & Sengottuvel, R. (2016). Qualitative and quantitative phytochemical analysis of Moringa concanensis Nimmo. International Journal of Current Microbiology and Applied Sciences, 5(1), 633–640. https://doi.org/10.20546/ijcmas.2016.501.064

Schroeder, M., Brooks, B. D., & Brooks, A. E. (2017). The complex relationship between virulence and antibiotic resistance. Genes, 8(1), 39. https://doi.org/10.3390/genes8010039

Sen, A., & Batra, A. (2012). Determination of antimicrobial potentialities of different solvent extracts of the medicinal plant Phyllanthus amarus Schum. and Thonn. International Journal of Green Pharmacy, 6(1), 50–56. https://doi.org/10.4103/0973-8258.97134

Senthilkumar, A., Karuvantevida, N., Rastrelli, L., Kurup, S. S., & Cheruth, A. J. (2018). Traditional uses, pharmacological efficacy, and phytochemistry of Moringa peregrina (Forssk.) Fiori: A review. Frontiers in Pharmacology, 9, 465. https://doi.org/10.3389/fphar.2018.00465

Shubra, P., T. Shantikumar S., Dechen, C., & Tsering. (2014). Antibiotic Susceptibility Profile of Bacteria Isolated from Natural Sources of Water from Rural Areas of East Sikkim. Indian Journal of Community Medicine, 39(3). https://doi.org/10.4103/0970-0218.137152

Sousa, C. P. (2008). The impact of food manufacturing practices on food-borne diseases. Brazilian Archives of Biology and Technology, 51(4), 815–823. https://doi.org/10.1590/S1516-89132008000400022

Tekuri, S. K., Pasupuleti, S. K., Konidala, K. K., & Pabbaraju, N. (2019). Pharmacological effects of Polyalthia cerasoides (Roxb.) Bedd.: A brief review. Journal of Complementary Medicine Research, 10(1), 38–49. https://doi.org/10.5455/jcmr.20190108065022

Thabit, A. K., Crandon, J. L., & Nicolau, D. P. (2015). Antimicrobial resistance: Impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opinion on Pharmacotherapy, 16(2), 159–177. https://doi.org/10.1517/14656566.2015.993381

Tijjani, M. B., Bello, I. A., Aliyu, A. B., Olurishe, T., Maidawa, S. M., Habila, J. D., & Balogun, E. O. (2009). Phytochemical and antibacterial studies of root extract of Cochlospermum tinctorium A. Rich. (Cochlospermaceae). Research Journal of Medicinal Plants, 3(1), 16–22. https://doi.org/10.3923/rjmp.2009.16.22

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264. https://doi.org/10.1073/pnas.1116437108

Traoré, M., Guiguemdé, A., Yago, I., Nikièma, J. B., Tinto, H., Dakuyo, Z. P., Ouédraogo, J. B., Guissou, I. P., & Guiguemdé, T. R. (2006). Investigation of antiplasmodial compounds from two plants, Cochlospermum tinctorium A. Rich and Gardenia sokotensis Hutch. African Journal of Traditional, Complementary and Alternative Medicine, 3(4), 34–41. https://doi.org/10.4314/ajtcam.v3i4.31175

Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112

Zalewska, M., Błazejewska, A., Czapko, A., & Popowska, M. (2021). Antibiotics and antibiotic resistance genes in animal manure-Consequences of its application in agriculture. Frontiers in Microbiology, 12, 610656. https://doi.org/10.3389/fmicb.2021.610656

Published

30-06-2025

How to Cite

Munir, Y. A., Muhammad, A. S., Hussaini, M., Muhammad, A. D., Bashir, A., & Asababullah, S. (2025). Assessment of Antibacterial Potential of Cochlospermum tinctorium against Antibiotic-Resistant Bacteria Isolated from Raw Chicken Meat. UMYU Journal of Microbiology Research (UJMR), 10(3), 367–379. https://doi.org/10.47430/ujmr.25103.037