Enhancement of Lipase Production using Bacteria Isolates from Meat Samples within Sokoto Metropolis
DOI:
https://doi.org/10.47430/ujmr.25103.024Keywords:
Lipase, production, optimization, meat, bacteriaAbstract
Study’s Excerpt:
- Bacillus sp. and baumanii isolated for microbial lipase production from meat samples.
- Optimal lipase production achieved at 40–50°C and pH 8 with 2.0% substrate.
- baumanii produced more lipase than Bacillus sp. under optimized conditions.
- Maximum lipase yield recorded: 25.00±0.10 U/ml from Bacillus sp..
- Study supports use of microbial lipase in eco-friendly food and cosmetic industries.
Full Abstract:
The need for biological enzyme production by microbes, such as lipase from bacteria, to replace chemical usage in the food and cosmetic industries will assist in achieving non-toxicity and biodegradability. This study aimed to produce and optimize process conditions of lipase using bacteria isolated from meat samples obtained around Sokoto Modern Abattoir of Sokoto metropolis, Sokoto State Nigeria. Bacteria were isolated and screened using sterile olive oil with phenol red agar. Temperature, substrate concentration, pH, and incubation time were optimized using one factor at a time (OFAT) analyses. The most potent bacteria in the lipase yield production were molecularly characterized. The identified isolates include Bacillus spp., Streptococcus sp., Acinetobacter baumanii, Lactobacillus sp., and Klebsiella pneumoniae. From the screening results, three (3) isolates were positive for lipase production, as evidenced by visible precipitates resulting from the degradation of fatty acids. Out of the three (3) isolates, two (2) exhibit more obvious precipitates from the calcium salt that the fatty acid generated during the hydrolysis reaction. Temperature optimization indicates 40°C for Bacillus sp. and 50°C for Acinetobacter baumanii were ideal for lipase synthesis. Acinetobacter baumanii showed more lipase producing activity than Bacillus sp. at pH 8, which was found to be the optimal pH for optimizing lipase synthesis for both isolates. Optimized incubation time also revealed that 48 hours was the ideal duration for the highest yield, while investigations on substrate concentration showed that 2.0% of substrate was ideal for lipase production. The results of the titrimetric assay showed an average of 13.93±8.00U/ml of lipase activity after 24 hours of incubation at 37°C, with the highest activity recorded from Bacillus sp. (25.00±0.10U/ml). This research revealed Bacillus sp. and Acinetobacter baumanii to be potential candidates in producing lipase, which could serve as a promising biocatalyzing agent for large-scale industrial applications such as food and cosmetic productions.
Downloads
References
Abo-Kamer, A. M., Abdelaziz, A. A., Elkotb, E. S., & Al-Madboly, L. A. (2025). Production and characterization of a promising microbial-derived lipase enzyme targeting BCL-2 gene expression in hepatocellular carcinoma. Microbial Cell Factories, 24(1), 58. https://doi.org/10.1186/s12934-025-02671-7
Adeleke, B. S. (2024). 16S rRNA gene sequencing data of plant growth-promoting jute-associated endophytic and rhizobacteria from coastal-environment of Ondo State, Nigeria. Data in Brief, 54, 110286. https://doi.org/10.1016/j.dib.2024.110286
Adrio, J. L., & Demain, A. L. (2014). Microbial enzymes: Tools for biotechnological processes. Biomolecules, 4(1), 117–139. https://doi.org/10.3390/biom4010117
Ali, S., Khan, S. A., Hamayun, M., & Lee, I. J. (2023). The recent advances in the utility of microbial lipases: A review. Microorganisms, 11(2), 510. https://doi.org/10.3390/microorganisms11020510
Arife, P. E., Barbaros, D., Nimet, B., & Ahmet, A. (2015). Partial purification and characterization of lipase from Geobacillus stearothermophilus AH22. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(2), 325–331. https://doi.org/10.3109/14756366.2015.1024677
Atlabachew, T., & Mamo, J. (2021). Microbiological quality of meat and swabs from contact surface in butcher shops in Debre Berhan, Ethiopia. Journal of Food Quality, 2021(1), 7520882. https://doi.org/10.1155/2021/7520882
Bano, K., Kuddus, M., Zaheer, M. R., Zia, Q., Khan, M. F., Gupta, A., & Aliev, G. (2017). Microbial enzymatic degradation of biodegradable plastics. Current Pharmaceutical Biotechnology, 18(5), 429–440. https://doi.org/10.2174/1389201018666170523165742
Basha, P. A. (2021). Oil degrading lipases and their role in environmental pollution. In Recent developments in applied microbiology and biochemistry (pp. 269–277). Academic Press. https://doi.org/10.1016/B978-0-12-821406-0.00025-4
Cardenas, J., Alvarez, E., De Castro-Alvarez, M. S., Sanchez-Montero, J. M., Valmaseda, M., Elson, S. W., & Sinisterra, J. V. (2001). Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. Journal of Molecular Catalysis B: Enzymatic, 14, 111–123. https://doi.org/10.1016/S1381-1177(00)00244-7
Devi, T., Sistla, S., Khan, R. T., Kailoo, S., Bhardwaj, M., & Rasool, S. (2025). Purification and characterization of detergent stable alkaline lipase from Bacillus safensis TKW3 isolated from Tso Kar brackish water lake. PeerJ, 13, e18921. https://doi.org/10.7717/peerj.18921
Dharmsthiti, S., Pratuangdejkul, J., Theeragool, G. T., & Luchai, S. (1998). Lipase activity and gene cloning of Acinetobacter calcoaceticus LP009. Journal of General and Applied Microbiology, 44, 139–145. https://doi.org/10.2323/jgam.44.139
Ebrahim, N., & Ma, K. (2017). Industrial applications of thermostable enzymes from extremophilic microorganisms. Current Biochemical Engineering, 4(2), 75–98. https://doi.org/10.2174/2212711904666170405123414
Esakkiraj, P., Rajikunar, M., Palavesam, A., & Immanuel, G. (2010). Lipase production by Staphylococcus epidermidis CMSSTPI isolated from the gut of shrimp Penaeus indicus. Annals of Microbiology, 60, 37–42. https://doi.org/10.1007/s13213-009-0003-x
Fasim, A., More, V. S., & More, S. S. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, 69, 68–76. https://doi.org/10.1016/j.copbio.2020.12.002
Feitosa, I. C., Barbosa, J. M. P., Orellana, S. C., Lima, A. S., & Soares, C. M. F. (2010). Produção de lipase por meio de microrganismos isolados de solos com histórico de contato com petróleo. Acta Scientiarum Technology, 32, 27–31. https://doi.org/10.4025/actascitechnol.v32i1.7550
Gopinath, S. C. B., Anbu, P., & Hilda, A. (2005). Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience, 46(2), 119–126. https://doi.org/10.1007/S10267-004-0221-9
Iqbal, A. S., & Rehman, A. (2015). Characterization of lipase from Bacillus subtilis I-4 and its potential use in oil-contaminated wastewater. Brazilian Archives of Biology and Technology, 58(5), 789–797. https://doi.org/10.1590/S1516-89132015050318
Jaiganesh, R., & Jaganathan, M. K. (2018). Isolation, purification and characterization of lipase from Bacillus sp. from kitchen grease. Asian Journal of Pharmacy and Clinical Research, 11(6), 224–227. https://doi.org/10.22159/ajpcr.2018.v11i6.24955
Jothyswarupha, K. A., Venkataraman, S., Rajendran, D. S., Shri, S. S., Sivaprakasam, S., Yamini, T., Karthik, P., & Kumar, V. V. (2025). Immobilized enzymes: Exploring its potential in food industry applications. Food Science and Biotechnology, 34(7), 1533–1555. https://doi.org/10.1007/s10068-024-01742-6
Kadam, V., Dhanorkar, M., Patil, S., & Singh, P. (2024). Advances in the co-production of biosurfactant and other biomolecules: Statistical approaches for process optimization. Journal of Applied Microbiology, 135(2), lxae025. https://doi.org/10.1093/jambio/lxae025
Karunarathna, J. A. D. D., & Samaraweera, P. (2024). Investigation of lipase-producing bacteria from oil-contaminated soil and characterization of lipase. Sri Lankan Journal of Applied Sciences, 3(01), 07–14.
Kaya, Ç., & Özatay, Ş. (2024). Current approaches in industrial dairy enzymes. Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi, 5(9), 15–24.
Khan, N. R., & Rashid, A. B. (2024). Carbon-based nanomaterials: A paradigm shift in biofuel synthesis and processing for a sustainable energy future. Energy Conversion and Management: X, 100590. https://doi.org/10.1016/j.ecmx.2024.100590
Lee, L. P., Karbul, H. M., Citartan, M., Gopinath, S. C., Lakshmipriya, T., & Tang, T. H. (2015). Lipase-secreting Bacillus species in an oil-contaminated habitat: Promising strains to alleviate oil pollution. BioMed Research International. https://doi.org/10.1155/2015/820575
Liu, B., Song, J., Li, Y., Niu, J., Wang, Z., & Yang, Q. (2013). Towards industrially feasible treatment of potato starch processing waste by mixed cultures. Applied Biochemistry and Biotechnology, 171(4), 1001–1010. https://doi.org/10.1007/s12010-013-0401-1
Lyu, Q., Dar, R. A., Baganz, F., Smoliński, A., Rasmey, A. H. M., Liu, R., & Zhang, L. (2025). Effects of lignocellulosic biomass-derived hydrolysate inhibitors on cell growth and lipid production during microbial fermentation of oleaginous microorganisms—A review. Fermentation, 11(3), 121. https://doi.org/10.3390/fermentation11030121
Mohammad, A. J., & Alyousif, N. A. (2022). Molecular identification and assessment of bacterial contamination of frozen local and imported meat and chicken in Basrah, Iraq using 16S rDNA gene. Biodiversitas Journal of Biological Diversity, 23(3). https://doi.org/10.13057/biodiv/d230350
Mohankumar, N. (2018). Isolation and screening of soil microorganisms with lipase activity [Doctoral dissertation, St. Teresa's College (Autonomous), Ernakulam].
Mokrani, S., & Nabti, E. H. (2024). Recent status in production, biotechnological applications, commercial aspects, and future prospects of microbial enzymes: A comprehensive review. International Journal of Agricultural Science and Food Technology, 10, 006–020. https://doi.org/10.17352/2455-815X.000202
Musa, H., & Tayo, A. C. B. (2012). Screening of microorganisms isolated from different environmental samples for extracellular lipase production. Journal of Applied Sciences, 15(3), 179–186.
Nwachukwu, E., Ejike, E. N., Ejike, B. U., Onyeanul, E. O., Chikezie-Abba, R. O., Okorocha, N. A., & Onukaogu, U. E. (2017). Characterization and optimization of lipase production from soil microorganism (Serratia marcescens). International Journal of Current Microbiology and Applied Sciences, 6(12), 1215–1231. https://doi.org/10.20546/ijcmas.2017.612.138
Ogodo, U. P., & Abosede, O. O. (2025). The role of chemistry in achieving sustainable development goals: Green chemistry perspective. International Research Journal of Pure and Applied Chemistry, 26(1), 1–8. https://doi.org/10.9734/irjpac/2025/v26i1893
Oyeleke, B., & Manga, S. B. (2008). Essentials of laboratory practical in microbiology. Department of Microbiology, UDUS.
Pualsa, J., Verma, D., Gavankar, R., & Bhagat, R. D. (2013). Production of microbial lipases isolated from curd using waste oil as a substrate. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4, 831.
Qian, Z., & Chun-Yun, Z. G. (2009). Screening for lipase-producing Enterobacter agglomerans for biodiesel catalyzation. African Journal of Biotechnology, 8, 1273–1279.
Ramani, K., Chockalingam, E., & Sekaran, G. (2010). Production of a novel extracellular acidic lipase from Pseudomonas gessardii using slaughterhouse waste as a substrate. Journal of Industrial Microbiology and Biotechnology, 37, 531–535. https://doi.org/10.1007/s10295-010-0700-2
Regassa, H., Bose, D., & Mukherjee, A. (2021). Review of microorganisms and their enzymatic products for industrial bioprocesses. Industrial Biotechnology, 17(4), 214–226. https://doi.org/10.1089/ind.2021.0002
Sanger, F., Nicklen, S., & Coulson, A. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
Savadori, P., Dalfino, S., Piazzoni, M., Parrini, M., Del Fabbro, M., Tartaglia, G. M., & Giardino, L. (2023). A simplified method for detecting Gram-positive and Gram-negative bacteria in dental histological samples: A preliminary and comparative study. Acta Histochemica, 125(1), 151992. https://doi.org/10.1016/j.acthis.2022.151992
Silva, W. O. B., Mitidieri, S., Schrank, A., & Vainstein, M. H. (2005). Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochemistry, 40, 321–326. https://doi.org/10.1016/j.procbio.2004.01.005
Sooch, B. S., & Kauldhar, B. S. (2013). Influence of multiple bioprocess parameters on production of lipase from Pseudomonas sp. BWS-5. Brazilian Archives of Biology and Technology, 56(5), 711–721. https://doi.org/10.1590/S1516-89132013000500002
Treichel, H., de Oliveira, D., Mazutti, M. A., Di Luccio, M., & Oliveira, J. V. (2010). A review on microbial lipases production. Food and Bioprocess Technology, 3, 182–196. https://doi.org/10.1007/s11947-009-0202-2
Ullah, S., Malook, I., Bashar, K. U., Riaz, M., Aslam, M. M., Rehman, Z. U., Fayyaz, M., & Jamil, M. (2016). Purification and application of lipases from Pseudomonas species: Lipases from Pseudomonas species. Pakistan Journal of Scientific and Industrial Research Series B: Biological Sciences, 59(2), 111–116. https://doi.org/10.52763/PJSIR.BIOL.SCI.59.2.2016.111.116
Uzoigwe, N. E., Nwufo, C. R., Nwankwo, C. S., Ibe, S. N., Amadi, C. O., & Udujih, O. G. (2021). Assessment of bacterial contamination of beef in slaughterhouses in Owerri zone, Imo state, Nigeria. Scientific African, 12, e00769. https://doi.org/10.1016/j.sciaf.2021.e00769
Vanleeuw, E., Winderickx, S., Thevissen, K., Lagrain, B., Dusselier, M., Cammue, B. P., & Sels, B. F. (2019). Substrate-specificity of Candida rugosa lipase and its industrial application. ACS Sustainable Chemistry & Engineering, 7(19), 15828–15844. https://doi.org/10.1021/acssuschemeng.9b03257
Vardar-Yel, N., Tütüncü, H. E., & Sürmeli, Y. (2024). Lipases for targeted industrial applications, focusing on the development of biotechnologically significant aspects: A comprehensive review of recent trends in protein engineering. International Journal of Biological Macromolecules, 132853. https://doi.org/10.1016/j.ijbiomac.2024.132853
Veerapagu, M., Narayanan, A. S., Ponmurugan, K., & Jeya, K. (2013). Screening selection identification production and optimization of bacterial lipase from oil spilled soil. Asian Journal of Pharmacy and Clinical Research, 6(3), 62–67.
Verma, S., Meghwanshi, G. K., & Kumar, R. (2021). Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie, 182, 23–36. https://doi.org/10.1016/j.biochi.2020.12.027
Vishnupriya, B., Sundaramoorthi, C., Kalaivani, M., & Selvam, K. (2010). Production of lipase from Streptomyces griseus and evaluation of bioparameters. International Journal of ChemTech Research, 2(3), 1380–1383.
Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1–2), 203–214. https://doi.org/10.1089/10665270050081478
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gada, N. M., Farouq, A. A., Ibrahim, U. B., Umar, R. A., Ladan, A. M., Abdullahi, S., Garba, N. Y., Fardami, A. Y.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.