Production of Biogas from Poultry Droppings using Anaerobic Digestion
DOI:
https://doi.org/10.47430/ujmr.25103.041Keywords:
Biogas, Temperature, pH, microbes, Poultry droppingsAbstract
Study’s Excerpt:
- Poultry droppings were assessed as a substrate for renewable biogas production.
- Peak biogas yield occurred at week 2 (535.00±70.50 mL), then declined sharply.
- Temperature ranged 30.20–41.71°C, while pH showed acidogenesis before stabilizing.
- Bacillus subtilis dominated microbial flora, with Shigella species least prevalent.
- Findings show poultry droppings can generate significant biogas in early retention.
Full Abstract:
The increasing demand for renewable energy sources highlights the need for optimizing biogas production. This study investigates the potential of poultry droppings as a substrate for biogas generation, focusing on the influence of temperature and pH variations on yield as key bacterial species involved were characterized. Anaerobic digestion was conducted using poultry droppings over seven weeks retention periods using the water displacement method, while temperature and pH variations were monitored throughout the study.. The highest biogas yield was recorded at week 2 (14 days) with 535.00±70.50 mL, while the lowest yield was observed at weeks 3 and 4 (21–28 days) with 0.00 mL. The highest temperature was recorded at week 6 (42 days) with 41.71±0.64°C, and the lowest at week 4 (28 days) with 30.20±2.78°C. The lowest pH was observed at week 2 (6.15±0.462) after digestion, indicating acidogenesis, while the pH stabilized in the later weeks. Microbial analysis revealed Bacillus subtilis (35.71%) as the most dominant bacterium, followed by Staphylococcus aureus and Escherichia coli (21.42% ) each, while Shigella species had the lowest occurrence with 7.14%. The results indicate anaerobic digestion of poultry droppings can yield significant amounts of biogas, particularly during the second week of retention.
Downloads
References
Adekunle, K. F., & Okolie, J. A. (2015). A review of biochemical process of anaerobic digestion. Advances in Bioscience and Biotechnology, 06(03), 205–212. https://doi.org/10.4236/abb.2015.63020
Adekunle, K. F., & Okolie, J. A. (2015). A review of biochemical process of anaerobic digestion. Advances in Bioscience and Biotechnology, 06(03), 205–212. https://doi.org/10.4236/abb.2015.63020
Adeleke, A. J., Ajunwa, O. M., Golden, J. A., Antia, U. E., Adesulu-Dahunsi, A. T., Adewara, O. A., Popoola, O. D., Oni, E. O., Thomas, B. T., & Luka, Y. (2023). Anaerobic Digestion Technology for Biogas Production: Current Situation in Nigeria (A Review). UMYU Journal of Microbiology Research (UJMR), 8(2), 153–164. https://doi.org/10.47430/ujmr.2382.018
Agrawal, A., Chaudhari, P. K., & Ghosh, P. (2023). Effect of inoculums type and optimization of inoculum to substrate ratio on the kinetics of biogas production of fruit and vegetable waste. Environmental Engineering Research, 29(1), 220518–0. https://doi.org/10.4491/eer.2022.518
Alfa, M., Adie, D., Igboro, S., Oranusi, U., Dahunsi, S., & Akali, D. (2013). Assessment of biofertilizer quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings. Renewable Energy, 63, 681–686. https://doi.org/10.1016/j.renene.2013.09.049
Amha, Y. M., Sinha, P., Lagman, J., Gregori, M., & Smith, A. L. (2017). Elucidating microbial community adaptation to anaerobic co-digestion of fats, oils, and grease and food waste. Water Research, 123, 277–289. https://doi.org/10.1016/j.watres.2017.06.065
Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., … Van Lier, J. B. (2011). Defining and reporting the efficiency of anaerobic digestion processes: A consensus statement. Water Science and Technology, 64(5), 993–998. https://doi.org/10.2166/wst.2011.207
Anukam, A., Mohammadi, A., Naqvi, M., & Granström, K. (2019). A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes, 7(8), 504. https://doi.org/10.3390/pr7080504
Atedhor, G. (2015). Agricultural vulnerability to climate change in Sokoto State, Nigeria. African Journal of Food Agriculture Nutrition and Development, 15(69), 9855–9871. https://doi.org/10.18697/ajfand.69.15220
Babaei, A., & Shayegan, J. (2019). Effects of temperature and mixing modes on the performance of municipal solid waste anaerobic slurry digester. Journal of Environmental Health Science and Engineering, 17(2), 1077–1084. https://doi.org/10.1007/s40201-019-00422-6
Barua, V. B., Rathore, V., & Kalamdhad, A. S. (2018). Anaerobic co-digestion of water hyacinth and banana peels with and without thermal pretreatment. Renewable Energy, 134, 103–112. https://doi.org/10.1016/j.renene.2018.11.018
Buhlmann, C. H., Mickan, B. S., Jenkins, S. N., Tait, S., Kahandawala, T. K., & Bahri, P. A. (2019). Ammonia stress on a resilient mesophilic anaerobic inoculum: methane production, microbial community, and putative metabolic pathways. Bioresource Technology, 275, 70–77. https://doi.org/10.1016/j.biortech.2018.12.012
Buivydas, E., Navickas, K., Venslauskas, K., Žalys, B., Župerka, V., & Rubežius, M. (2022). Biogas Production Enhancement through Chicken Manure Co-Digestion with Pig Fat. Applied Sciences, 12(9), 4652. https://doi.org/10.3390/app12094652
Carlini, M., Castellucci, S., & Moneti, M. (2015). Biogas Production from Poultry Manure and Cheese Whey Wastewater under Mesophilic Conditions in Batch Reactor. Energy Procedia, 82, 811–818. https://doi.org/10.1016/j.egypro.2015.11.817
Chiu, Y., Lai, H., Lee, T., & Liaw, Y. (2007). Technological diversification, complementary assets, and performance. Technological Forecasting and Social Change, 75(6), 875–892. https://doi.org/10.1016/j.techfore.2007.07.003
Dike, E. N., & Nwachukwu, N. C. (2013). Assessment of bacterial diversity in the chicken litter: A potent risk to environmental health. Journal of Experimental Biology and Agricultural Sciences, 10(4), 375-391. https://www.researchgate.net/publication/374149191_Assessment_of_bacterial_diversity_in_the_chicken_litter_A_potent_risk_to_environmental_health
Ezeagu, T. N., Eze, E. A., & Eze, C. N. (2023). Assessment of bacterial contamination in poultry feeds from three companies in Abuja, Nigeria. Umaru Musa Yar'adua University Journal of Microbiology Research, 8(1), 1-10. https://ujmr.umyu.edu.ng/index.php/ujmr/article/view/469
Ezekoye, V., Ezekoye, B., & Offor, P. (2011). Effect of Retention Time on Biogas Production from Poultry Droppings and Cassava Peels. Nigerian Journal of Biotechnology, 22, 53–59. https://africaneditors.org/journal/NJB/full-text-pdf/69936-38871
Fuchs, W., Wang, X., Gabauer, W., Ortner, M., & Li, Z. (2018). Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China. Renewable and Sustainable Energy Reviews, 97, 186–199. https://doi.org/10.1016/j.rser.2018.08.038
Habib, S. S., Torii, S., S, K. M., & Nair, A. C. A. (2024). Optimization of the factors affecting biogas production using the Taguchi Design of Experiment method. Biomass, 4(3), 687–703. https://doi.org/10.3390/biomass4030038
Hagos, K., Zong, J., Li, D., Liu, C., & Lu, X. (2016). Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, 76, 1485–1496. https://doi.org/10.1016/j.rser.2016.11.184
Hammad, E. I., Al-Agha, M. R., & El-Nahhal, Y. (2018). Enhancing Biogas Production: Influence of Mixing Cow and Chicken Manures. Energy and Power Engineering, 10(8), 383-397. https://doi.org/10.4236/epe.2018.108024
Ibrahim, M., Barau, L., Alhassan, M., Gidadawa, Z. S., & Galadima, H. D. (2019). Assessment of Environmental Impact of Solid Waste Generation and Disposal in Sokoto Metropolis. International Journal of Scientific and Research Publications, 9(5), p8945. https://doi.org/10.29322/ijsrp.9.05.2019.p8945
Ifabiyi, P., I. & Ojoye, S. (2013). Rainfall trends in the Sudano-Sahelian ecological zone of Nigeria. Earth Science Research, 2(2). https://doi.org/10.5539/esr.v2n2p194
Iglesias, R., Muñoz, R., Polanco, M., Díaz, I., Susmozas, A., Moreno, A. D., Guirado, M., Carreras, N., & Ballesteros, M. (2021). Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies, 14(10), 2742. https://doi.org/10.3390/en14102742
Islam, M. A., Biswas, P., Sabuj, A. a. M., Haque, Z. F., Saha, C. K., Alam, M. M., Rahman, M. T., & Saha, S. (2019). Microbial load in bio-slurry from different biogas plants in Bangladesh. Journal of Advanced Veterinary and Animal Research, 6(3), 376. https://doi.org/10.5455/javar.2019.f357
Khanal, S. K., Lü, F., Wong, J. W., Wu, D., & Oechsner, H. (2021). Anaerobic digestion beyond biogas. Bioresource Technology, 337, 125378. https://doi.org/10.1016/j.biortech.2021.125378
Li, Z., Inoue, D., & Ike, M. (2023). Mitigating ammonia-inhibition in anaerobic digestion by bioaugmentation: A review. Journal of Water Process Engineering, 52, 103506. https://doi.org/10.1016/j.jwpe.2023.103506
Liu, G., Zhang, R., El-Mashad, H. M., & Dong, R. (2009). Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology, 100(21), 5103–5108. https://doi.org/10.1016/j.biortech.2009.03.081
Ma, J., Zhao, Q., Laurens, L. L. M., Jarvis, E. E., Nagle, N. J., Chen, S., & Frear, C. S. (2015). Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnology for Biofuels, 8(1). https://doi.org/10.1186/s13068-015-0322-z
Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2018). Brock biology of microorganisms (15th ed.). Pearson. https://www.pearson.com/en-us/subject-catalog/p/brock-biology-of-microorganisms/P200000003165/9780134261928
Mahdy, A., Bi, S., Song, Y., Qiao, W., & Dong, R. (2019). Overcome inhibition of anaerobic digestion of chicken manure under ammonia-stressed condition by lowering the organic loading rate. Bioresource Technology Reports, 9, 100359. https://doi.org/10.1016/j.biteb.2019.100359
Masinde, B. H., Nyaanga, D. M., Njue, M. R., & Matofari, J. W. (2020). Optimization of biogas production in a batch laboratory digester using total solids, substrate retention time, and mesophilic temperature. International Journal of Power and Energy Research, 4(2). https://doi.org/10.22606/ijper.2020.42001
Massé, D. I., Rajagopal, R., & Singh, G. (2014). Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste. Applied Energy, 120, 49–55. https://doi.org/10.1016/j.apenergy.2014.01.034
Maurus, K., Kremmeter, N., Ahmed, S., & Kazda, M. (2021). High-resolution monitoring of VFA dynamics reveals process failure and exponential decrease of biogas production. Biomass Conversion and Biorefinery, 13(12), 10653–10663. https://doi.org/10.1007/s13399-021-02043-2
Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass and Bioenergy, 26(5), 485–495. https://doi.org/10.1016/j.biombioe.2003.08.008
Montecchio, D., Gallipoli, A., Gianico, A., Mininni, G., Pagliaccia, P., & Braguglia, C. (2017). Biomethane potential of food waste: modeling the effects of mild thermal pretreatment and digestion temperature. Environmental Technology, 38, 1452–1464. https://doi.org/10.1080/09593330.2016.1233293
Ndubuisi-Nnaji, U., Ofon, U., Asira, A., Dickson, N., & Benson, E. (2023). Anaerobic digestion of untreated manure: Environmental risk assessment of resultant digestates. World Journal of Applied Science & Technology, 14(1b), 73–79. https://doi.org/10.4314/wojast.v14i1b.73
Ngumah, C., Ogbulie, J. N., Orji, J. C., & Amadi, E. S. (2013). Biogas potential of organic waste in nigeria. Journal of Urban and Environmental Engineering, 110–116. https://doi.org/10.4090/juee.2013.v7n1.110116
Nwachukwu, N. N. N., Chidinma, N., C, Dickson, N., E., & E, N. N. (2024). Methicillin-Resistant Staphylococcus aureus among Poultry in Umuahia, Nigeria. Microbiology Research Journal International, 34(1), 1–9. https://doi.org/10.9734/mrji/2024/v34i11421
Nwankwo, D. O., Ugwu, C. C., & Okoli, I. C. (2021). Isolation and characterization of Salmonella spp. and Escherichia coli from poultry feeds in Ebonyi State, Nigeria. International Journal of Microbiology and Biotechnology, 6(3), 15–21. https://doi.org/10.9734/ijmb/2021/v6i330173
Nwokolo, N., Mukumba, P., Obileke, K., & Enebe, M. (2020). Waste to Energy: A focus on the impact of substrate type in biogas production. Processes, 8(10), 1224. https://doi.org/10.3390/pr8101224
Obi, O. J., & Ike, A. C. (2018). Occurrence and Antibiogram of Shigella spp in Free Range and Intensively Reared Chickens in Nsukka, Enugu State, Nigeria. Microbiology Research Journal International, 25(4), 1–7. https://doi.org/10.9734/mrji/2018/44934
Odoi, H., Boamah, V. E., Boakye, Y. D., & Agyare, C. (2021). Prevalence and Phenotypic and Genotypic Resistance Mechanisms of Multidrug-Resistant Pseudomonas aeruginosa Strains Isolated from Clinical, Environmental, and Poultry Litter Samples from the Ashanti Region of Ghana. Journal of Environmental and Public Health, 1–12. https://doi.org/10.1155/2021/9976064
Ofon, U. A., Ndubuisi-Nnaji, U. U., Udo, I. M., Udofia, E. S., Fatunla, O., & Shaibu, S. E. (2024). Biogas production potential from anaerobic co-digestion of food waste and animal manure. Journal of Chemical Society of Nigeria, 49(1). https://doi.org/10.46602/jcsn.v49i1.949
Ona, I. J., Loya, S. M., Agogo, H. O., Iorungwa, M. S., & Ogah, R. (2019). Biogas Production from the Co-Digestion of Cornstalks with Cow Dung and Poultry Droppings. Journal of Agricultural Chemistry and Environment, 08(03), 145–154. https://doi.org/10.4236/jacen.2019.83012
Onwuliri, F.C., Onyimba, I.A., Nwaukwu, I.A. (2014). Generation of Biogas from Cow Dung. Journal of Bioremediation & Biodegradation, 05(02). https://doi.org/10.4172/2155-6199.s18-002
Orhorhoro, E., & Oghoghorie, O. (2019). Review on Solid Waste Generation and Management in Sub-Saharan Africa: A Case Study of Nigeria. Journal of Applied Sciences and Environmental Management, 23(9), 1729. https://doi.org/10.4314/jasem.v23i9.19
Paramaguru, G., Kannan, M., Lawrence, P., & Thamilselvan, D. (2017). Effect of total solids on biogas production through anaerobic digestion of food waste. Desalination and Water Treatment, 63, 63–68. https://doi.org/10.5004/dwt.2017.20167
Rabah, A. B., Baki, A. S., Hassan, L. G., Musa, M., & Ibrahim, A. D. (2010). Production of biogas using abattoir waste at different retention time. Science World Journal, 5(4), 23–26. https://www.cabdirect.org/cabdirect/abstract/20113371068
Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W., and Baroutian, S. (2019). Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel, 261, 116497. https://doi.org/10.1016/j.fuel.2019.116497
Rubežius, M., Bleizgys, R., Venslauskas, K., & Navickas, K. (2020). Influence of biological pretreatment of poultry manure on biochemical methane potential and ammonia emission. Biomass and Bioenergy, 142, 105815. https://doi.org/10.1016/j.biombioe.2020.105815
Sher, F., Smječanin, N., Hrnjić, H., Karadža, A., Omanović, R., Šehović, E., & Sulejmanović, J. (2024). Emerging technologies for biogas production: A critical review on recent progress, challenges and future perspectives. Process Safety and Environmental Protection, 188, 834–859. https://doi.org/10.1016/j.psep.2024.05.138
Shu, C., Jaiswal, R., Kuo, M., & Yu, B. (2022). Enhancing methane production in a Two-Stage anaerobic digestion of spent mushroom substrate and chicken manure via activation of sludge, optimization of temperature, and C/N ratio. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.810678
Subbarao, P. M., Silva, T. C. D., Adlak, K., Kumar, S., Chandra, R., & Vijay, V. K. (2023). Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Environmental Research, 234, 116286. https://doi.org/10.1016/j.envres.2023.116286
Tsoho, B. A., & Salau, S. A. (2012). Profitability and constraints to dry season vegetable production under fadama in Sudan savannah ecological zone of Sokoto State, Nigeria. Journal of Development and Agricultural Economics, 4(7), 214–224. https://doi.org/10.5897/jdae11.31
Ugwu, C. C., & Nwankwo, D. O. (2021). Isolation and identification of Salmonella spp. and Shigella spp. from different poultry feeds, droppings, and drinking water used in poultry farms in Ishiagu, Ebonyi State. International Journal of Innovative Research and Advanced Studies, 8(4), 1-7.
Ugwu, S. N., & Enweremadu, C. C. (2020). Enhancement of biogas production process from biomass wastes using iron-based additives: types, impacts, and implications. Energy Sources Part a Recovery Utilization and Environmental Effects, 44(2), 4458–4480. https://doi.org/10.1080/15567036.2020.1788675
Valgas, C., Souza, S.M., Smania, E.F. and Smania Jr., A. (2007) Screening Methods to Determine Antibacterial Activity of Natural Products. Brazilian Journal of Microbiology, 38, 369-380. https://doi.org/10.1590/S1517-83822007000200034
Wainaina, S., Awasthi, M. K., Sarsaiya, S., Chen, H., Singh, E., Kumar, A., Ravindran, B., Awasthi, S. K., Liu, T., Duan, Y., Kumar, S., Zhang, Z., & Taherzadeh, M. J. (2020). Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresource Technology, 301, 122778. https://doi.org/10.1016/j.biortech.2020.122778
Wang, X., Lu, X., Li, F., & Yang, G. (2014). Effects of temperature and Carbon-Nitrogen (C/N) ratio on the performance of anaerobic Co-Digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. PLoS ONE, 9(5), e97265. https://doi.org/10.1371/journal.pone.0097265
Watanabe, H., Nambu, T., & Ohno, K. (2016). Isolation of Pseudomonas aeruginosa and other methanogenic bacteria from cattle waste treatment. Environmental Science & Technology, 50(6), 338-346. https://doi.org/10.1021/acs.est.5b05853
Weiland, P. (2009). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85(4), 849–860. https://doi.org/10.1007/s00253-009-2246-7
Zhao, S., Chen, W., Luo, W., Fang, H., Lv, H., Liu, R., & Niu, Q. (2020). Anaerobic co-digestion of chicken manure and cardboard waste: Focusing on methane production, microbial community analysis and energy evaluation. Bioresource Technology, 321, 124429. https://doi.org/10.1016/j.biortech.2020.124429
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Abdulkadir Shehu, Hassan Maishanu Muhammad, Sabi’u Yelwa Muhammad

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.