Assessment of Antibiotics Resistance pattern of Pseudomonas aeruginosa Isolated from Patients Admitted in selected Hospitals in Kebbi State, Nigeria
DOI:
https://doi.org/10.47430/ujmr.2382.023Keywords:
Pseudomonas aeruginosa, Antibiotics Resistance, Hospitals, KebbiAbstract
Pseudomonas aeruginosa is one of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp) that induce a dignified healthcare aggravation among hospital admitted patients. This results in prolonged hospital stays, which increase costs for healthcare providers and patients' families. Therefore, this study aimed to isolate Pseudomonas aeruginosa and evaluate its resistance patterns from patients admitted to selected hospitals in Kebbi State. A total of 185 clinical samples, including nasal intubation, urine catheters, and wound swabs, were obtained. The bacteria were isolated and identified following standard microbiological methods. Modified Kirby Bauer techniques was used to determine the susceptibility status of the isolates. Out of 185 clinical samples collected, 43 (23.2%) bacterial isolates yield positive and 13 (30.2%) of which were P. aeruginosa from the studied hospitals. Prevalence of P. aeruginosa was found to be higher among females 08 (61.5%). The age groups 6-11 years had the highest prevalence P. aeruginosa 07 (53.8%). P. aeruginosa was isolated most from wound swab samples, 07 (24.1%). The Pseudomonas aeruginosa isolates exhibit high level resistance (100%) to Amoxicillin/Clavulanic acid, Cefpodoxime, Cefepime, Cepotaxime and Meropenem and showed least resistant to Imepenem 05 (38.4%). The increasing resistance of Pseudomonas aeruginosa isolates to multiple antimicrobial agents that are currently considered as first- line agents for the treatment of Pseudomonas aeruginosa infections, this highlights the need for careful use of these agents and also suggests the need for careful and up-to-date monitoring of multidrug- resistant strains diffusion in the various health care facilities of the country. Treatment options should be guided by medical laboratory scientist via microscopy culture and sensitivity testing, as well as local epidemiological surveillance data.
Downloads
References
Abootaleb, M., Zolfaghari, M. R., Soleimani, N. A., Ghorbanmehr, N., Yazdian, M. R. (2020). Biofilm formation with Microtiter plate 96 and pslA detection of Pseudomonas aeruginosa isolates from clinical samples in Iran. International Journal of Advanced Biomedical Res;8:58-66. https://doi.org/10.33945/SAMI/IJABBR.2020.1.6
Ahmad, B., and Kudi, M. (2003). Chronic suppurative otitis media in Gombe, Nigeria. Nigerian Journal of Surgical Research, 5 (3), 120-123. https://doi.org/10.4314/njsr.v5i3.12253
Bashir, A., Garba, I., Aliero, A. A., Kibiya, A., Abubakar, M. H., Ntulume, I., Faruk, S., and Ezera. A. (2019). Superbugs-related prolonged admissions in three tertiary hospitals, Kano State, Nigeria. Pan African Medical Journal. 32 (166). https://doi.org/10.11604/pamj.2019.32.166.18481
Blomquist, K. C., and Nix, D. E. (2021). A critical evaluation of newer β-lactam antibiotics for treatment of Pseudomonas aeruginosa infections. Journal of Pharmacotherapy, 55 (8), 1010-1024. https://doi.org/10.1177/1060028020974003
Botelho, J., Grosso, F., and Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa- Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44, 100640. https://doi.org/10.1016/j.drup.2019.07.001
Bukholm, G., Tannaes, T., Kjelsberg, A. B., and Smith-Erichsen, N. (2002). An outbreak of multidrug- resistant Pseudomonas aeruginosa associated with increased risk of patient death in an intensive care unit. Journal of Infection Control; 23:441-6. https://doi.org/10.1086/502082
Chah., K., Eze, C., and Oluoha, B. (2003). Frequency and antimicrobial resistance of aerobic bacteria isolated from surgical sites in humans and animals in Nsukka, Southeast Nigeria. Nigerian Veterinary Journal, 24 (1), 1-7. https://doi.org/10.4314/nvj.v24i1.3429
Cheesbrough, M. (2010). District Laboratory Practice in Tropical Countries. Cambridge University press 2:132-142; 382-416.
Clinical Laboratory Standards Institute (CLSI) (2022). Performance standards for antimicrobial susceptibility testing; 21st informational supplement, CLSI M100-S22, Clinical and Laboratory Standards Institute Wayne, PA.
Egwuenu, A., Obasanya, J., Okeke, I., Aboderin, O., Olayinka, A., Kwange, D., Ogunniyi, A., Mbadiwe, E., Omoniyei, L., Omotayo, H., Niyang, M. (2018). Antimicrobial use and resistance in Nigeria: situation analysis and recommendations. https://doi: 10.11604/pamj-cp.2018.8.2.701
Ferede, D., Geyid, A., Lulseged, S. and Melaku, A. (2001). Drug susceptibility pattern of bacterial isolates from children with chronic suppurative otitis media. Ethiopian Journal of Health Development, 15(2). https://doi.org/10.4314/ejhd.v15i2.9882
Haque, M., Sartelli, M., McKimm, J., and Bakar, M. A. (2018). Health care-associated infections-an overview. Infection and drug resistance, 11, 2321. https://doi.org/10.2147/IDR.S177247
Hirsch, E. B, and Tam, V. H. (2010) Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Review Pharmacoecon Outcomes. 10:441-51. https://doi.org/10.1586/erp.10.49
Hussain, M., Munir, S., Fatima, M., Rahim, K., Ahmed, I., Basit, A., et al., (2017). Antimicrobial susceptibility patterns and CTX-M β-lactamase producing clinical isolates from burn patients in Islamabad, Pakistan. Asian Journal of Tropical Diseases; 7:486-90. https://doi.org/10.12980/apjtd.7.2017D7-75
Ibrahim, S., Abubakar, S. A., Aliero, A. A., and Shamsuddeen, U. (2018). Prevalence and Antibiotic Sensitivity Pattern of Staphylococcus aureus Isolated from Wound and Otitis Media among Patients Attending Aminu Kano Teaching Hospital, Kano, Nigeria. Microbiology Research Journal International 25(2):1-9. https://doi.org/10.9734/MRJI/2018/44684
Ijaz, M., Siddique, A. B., Rasool, M. H., and Shafique, M. (2019). Frequency of multi drug resistant Pseudomonas aeruginosa in different wound types of hospitalized patients. Pakistan Journal of Pharmaceutical Sciences. 32:865-70.
Ikonomidis, A., Pournaras, S., Maniatis A. N., Legakis N. J., Tsakris, A. (2006) Discordance of meropenem versus imipenem activity against Acinetobacter baumannii. International Journal of Antimicrob Agents. 28(4):376-7. https://doi: 10.1016/j.ijantimicag.2006.07.007.
Jombo, G. T. A., Jonah, P., and Ayeni, J. A. (2008). Multidrug resistant Pseudomonas aeruginosa in contemporary medical practice: findings from urinary isolates at a Nigerian University Teaching Hospital. Nigerian Journal of Physiological Sciences, 23(1-2), 105-109. https://doi.org/10.4314/njps.v23i1-2.54944
Kerr, K. G., and Snelling, A. M. (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. Journal of Hospital Infections Dec; 73(4):338-44. [PubMed] https://doi.org/10.1016/j.jhin.2009.04.020
Khalid, F., Siddique, A. B., Nawaz Z., Shafique M., Zahoor, M. A., Nisar, M. A., et al. (2017) Efficacy of bacteriophage against multidrug resistant Pseudomonas aeruginosa isolates. Southeast Asian Journal of Tropical Medicine and Public Health. 48:1056-62
Khan, F., Khan, A., and Kazmi, S. U. (2014). Prevalence and susceptibility pattern of multi drug resistant clinical isolates of Pseudomonas aeruginosa in Karachi. Pakistan Journal of Medical Science. 30:951-4. https://doi.org/10.12669/pjms.305.5400
Khan, H. A., Ahmad, A., and Mehboob, R. (2015) Nosocomial infections and their control strategies. Asian Journal of Biomedical. 5:509-14. https://doi.org/10.1016/j.apjtb.2015.05.001
Lodise, J. R., T. P. (2016). Pseudomonas aeruginosa. Journal of Clinical Infectious Diseases, 63, e61- e111.
Mancuso, G., Midiri, A., Gerace, E., Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10, 1310. https://doi.org/10.3390/pathogens10101310
Moore, N. M., & Flaws, M. L. (2011). Introduction: pseudomonas aeruginosa. International Journal of Clinical laboratory science, 24(1), 41. https://doi.org/10.29074/ascls.24.1.41
Odoki, M., Aliero, A. A., Tibyangye, J., Nyabayo, M. J., Wampande E., Drago, K. C., Ezera, A., Bazira, J. (2019). Prevalence of Bacterial Urinary Tract Infections and Associated Factors among Patients Attending Hospitals in Bushenyi District, Uganda. International Journal of Microbiology 8 p. https://doi.org/10.1155/2019/4246780
Oni, A., Nwaorgu, O., Bakare, R., Ogunkunle, M. and Toki, R. (2002). The discharging ears in Adults in Ibadan, Nigeria causative agents and antimicrobial sensitivity pattern. African Journal of Clinical and Experimental Microbiology, 3(1), 3-5. https://doi.org/10.4314/ajcem.v3i1.7341
Pagani, L., Mantengoli, E., Migliavacca, R., Nucleo, E., Pollini, S., Spalla, M., et al. (2004) Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum β-lactamase in northern Italy. Journal of Clinical Microbiology. 42:2523-9. https://doi.org/10.1128/JCM.42.6.2523-2529.2004
Park, S. C, Park, Y., and Hahm, K. S. (2011). The role of antimicrobial peptides in preventing multidrug- resistant bacterial infections and biofilm formation. International Journal of Molecular Science. 12: 5971-92. https://doi.org/10.3390/ijms12095971
Procop, G. W., Church, D., Hall, G., et al., (2017). Koneman's color atlas and textbook of diagnostic microbiology (Color Atlas & Textbook of Diagnostic Microbiology). Philadelphia, PA: Lippincott, Williams & Wilkins.
Qureshi, R., Shafique, M., Shahid, M., Rasool, M. H., Muzammil, S. (2018). Molecular detection of blaVIM Metallo-β-lactamase producing clinically isolated Pseudomonas aeruginosa from tertiary care hospital, Faisalabad. Pakistan Journal of Pharmaceutical Sciences.31:2673-7.
Samad, A., Khan, A. A., Sajid, M., Zahra, R. (2017). Assessment of biofilm formation by Pseudomonas aeruginosa and hydrodynamic evaluation of microtiter plate assay. Journal of Pakistan Medical Association. 69: 666-71.
Schaber, J. A., Triffo, W. J., Suh, S. J., Oliver, J. W., Hastert, M. C., Griswold, J. A., et al. (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cellto-cell signaling. Infect Immun. 75:3715-21. https://doi.org/10.1128/IAI.00586-07
Sinha, M., Ghosh, N., Wijesinghe, D. S., Mathew-Steiner, S. S., Das, A., Singh, K.,Yamazaki, K. (2022). Pseudomonas aeruginosa theft biofilm require host lipids of cutaneous wound. Journals of Surgery. https://doi.org/10.1097/SLA.0000000000005252
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, L., Pulcini, C., Kahlmeter., G., Kluytmans, J., Carmeli, Y., et al. (2018) Discovery, research, and development of new antibiotics:The WHO prioritylist of antibiotic-resistant bacteria and tuberculosis. International Journal of Chemotherapy 18, 327.
Wang, J., Zhou, J. Y., QU, T. T., Shen, P., Wei, Z. Q., Yu, Y. S., et al. (2010). Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. International Journal of Antimicrobials Agents.35: 486-91. https://doi.org/10.1016/j.ijantimicag.2009.12.014
Wozniak, D. J., Wyckoff, T. J., Starkey, M., Keyser, R., Azadi, P., O'Toole, G. A., et al. (2003). Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Nat Acad Sci U S A. 100:7907-12. https://doi.org/10.1073/pnas.1231792100
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 UMYU Journal of Microbiology Research (UJMR)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.