Assessment of Antibiotics Resistance pattern of Pseudomonas aeruginosa Isolated from Patients Admitted in selected Hospitals in Kebbi State, Nigeria

Authors

  • S Mohammed Department of Microbiology, Faculty of Life Sciences, Kebbi State University of Science and Technology Aliero https://orcid.org/0000-0002-0604-6638
  • A Saleh Department of Microbiology, Faculty of Life Sciences, Kebbi State University of Science and Technology Aliero, Kebbi State, Nigeria. https://orcid.org/0000-0002-8199-9156
  • B Abubakar Department of Veterinary Microbiology, Faculty of Veterinary Medicine Federal University Agriculture Zuru, Nigeria.
  • B Abdulkadir Department of Microbiology, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua University Katsina, Nigeria.
  • H Tariq Institute of Microbiology, Faculty of life Sciences, Government College University Faisalabad, Pakistan.
  • M Alhassan Department of Electrical Engineering, Faculty of Engineering, Kano State University of Science and Technology Wudil, Kano State, Nigeria.

DOI:

https://doi.org/10.47430/ujmr.2382.023

Keywords:

Pseudomonas aeruginosa, Antibiotics Resistance, Hospitals, Kebbi

Abstract

Pseudomonas aeruginosa is one of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp) that induce a dignified healthcare aggravation among hospital admitted patients. This results in prolonged hospital stays, which increase costs for healthcare providers and patients' families. Therefore, this   study aimed to isolate Pseudomonas aeruginosa and evaluate its resistance patterns from patients admitted to selected hospitals in Kebbi State. A total of 185 clinical samples, including nasal intubation, urine catheters, and wound swabs, were obtained. The bacteria were isolated and identified following standard microbiological methods. Modified Kirby Bauer techniques was used to determine the susceptibility status of the isolates. Out of 185 clinical samples collected, 43 (23.2%) bacterial isolates yield positive and 13 (30.2%) of which were P. aeruginosa from the studied hospitals. Prevalence of P. aeruginosa was found to be higher among females 08 (61.5%). The age groups 6-11 years had the highest prevalence P. aeruginosa 07 (53.8%). P. aeruginosa was isolated most from wound swab samples, 07 (24.1%). The Pseudomonas aeruginosa isolates exhibit high level resistance (100%) to Amoxicillin/Clavulanic acid, Cefpodoxime, Cefepime, Cepotaxime and Meropenem and showed least resistant to Imepenem 05 (38.4%). The increasing resistance of Pseudomonas aeruginosa isolates to multiple antimicrobial agents that are currently considered as first- line agents for the treatment of Pseudomonas aeruginosa infections, this highlights the need for careful use of these agents and also suggests the need for careful and up-to-date monitoring of multidrug- resistant strains diffusion in the various health care facilities  of the country. Treatment options should be guided by medical laboratory scientist via microscopy culture and sensitivity testing, as well as local epidemiological surveillance data.

Downloads

Download data is not yet available.

References

Abootaleb, M., Zolfaghari, M. R., Soleimani, N. A., Ghorbanmehr, N., Yazdian, M. R. (2020). Biofilm formation with Microtiter plate 96 and pslA detection of Pseudomonas aeruginosa isolates from clinical samples in Iran. International Journal of Advanced Biomedical Res;8:58-66. https://doi.org/10.33945/SAMI/IJABBR.2020.1.6

Ahmad, B., and Kudi, M. (2003). Chronic suppurative otitis media in Gombe, Nigeria. Nigerian Journal of Surgical Research, 5 (3), 120-123. https://doi.org/10.4314/njsr.v5i3.12253

Bashir, A., Garba, I., Aliero, A. A., Kibiya, A., Abubakar, M. H., Ntulume, I., Faruk, S., and Ezera. A. (2019). Superbugs-related prolonged admissions in three tertiary hospitals, Kano State, Nigeria. Pan African Medical Journal. 32 (166). https://doi.org/10.11604/pamj.2019.32.166.18481

Blomquist, K. C., and Nix, D. E. (2021). A critical evaluation of newer β-lactam antibiotics for treatment of Pseudomonas aeruginosa infections. Journal of Pharmacotherapy, 55 (8), 1010-1024. https://doi.org/10.1177/1060028020974003

Botelho, J., Grosso, F., and Peixe, L. (2019). Antibiotic resistance in Pseudomonas aeruginosa- Mechanisms, epidemiology and evolution. Drug Resistance Updates, 44, 100640. https://doi.org/10.1016/j.drup.2019.07.001

Bukholm, G., Tannaes, T., Kjelsberg, A. B., and Smith-Erichsen, N. (2002). An outbreak of multidrug- resistant Pseudomonas aeruginosa associated with increased risk of patient death in an intensive care unit. Journal of Infection Control; 23:441-6. https://doi.org/10.1086/502082

Chah., K., Eze, C., and Oluoha, B. (2003). Frequency and antimicrobial resistance of aerobic bacteria isolated from surgical sites in humans and animals in Nsukka, Southeast Nigeria. Nigerian Veterinary Journal, 24 (1), 1-7. https://doi.org/10.4314/nvj.v24i1.3429

Cheesbrough, M. (2010). District Laboratory Practice in Tropical Countries. Cambridge University press 2:132-142; 382-416.

Clinical Laboratory Standards Institute (CLSI) (2022). Performance standards for antimicrobial susceptibility testing; 21st informational supplement, CLSI M100-S22, Clinical and Laboratory Standards Institute Wayne, PA.

Egwuenu, A., Obasanya, J., Okeke, I., Aboderin, O., Olayinka, A., Kwange, D., Ogunniyi, A., Mbadiwe, E., Omoniyei, L., Omotayo, H., Niyang, M. (2018). Antimicrobial use and resistance in Nigeria: situation analysis and recommendations. https://doi: 10.11604/pamj-cp.2018.8.2.701

Ferede, D., Geyid, A., Lulseged, S. and Melaku, A. (2001). Drug susceptibility pattern of bacterial isolates from children with chronic suppurative otitis media. Ethiopian Journal of Health Development, 15(2). https://doi.org/10.4314/ejhd.v15i2.9882

Haque, M., Sartelli, M., McKimm, J., and Bakar, M. A. (2018). Health care-associated infections-an overview. Infection and drug resistance, 11, 2321. https://doi.org/10.2147/IDR.S177247

Hirsch, E. B, and Tam, V. H. (2010) Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Review Pharmacoecon Outcomes. 10:441-51. https://doi.org/10.1586/erp.10.49

Hussain, M., Munir, S., Fatima, M., Rahim, K., Ahmed, I., Basit, A., et al., (2017). Antimicrobial susceptibility patterns and CTX-M β-lactamase producing clinical isolates from burn patients in Islamabad, Pakistan. Asian Journal of Tropical Diseases; 7:486-90. https://doi.org/10.12980/apjtd.7.2017D7-75

Ibrahim, S., Abubakar, S. A., Aliero, A. A., and Shamsuddeen, U. (2018). Prevalence and Antibiotic Sensitivity Pattern of Staphylococcus aureus Isolated from Wound and Otitis Media among Patients Attending Aminu Kano Teaching Hospital, Kano, Nigeria. Microbiology Research Journal International 25(2):1-9. https://doi.org/10.9734/MRJI/2018/44684

Ijaz, M., Siddique, A. B., Rasool, M. H., and Shafique, M. (2019). Frequency of multi drug resistant Pseudomonas aeruginosa in different wound types of hospitalized patients. Pakistan Journal of Pharmaceutical Sciences. 32:865-70.

Ikonomidis, A., Pournaras, S., Maniatis A. N., Legakis N. J., Tsakris, A. (2006) Discordance of meropenem versus imipenem activity against Acinetobacter baumannii. International Journal of Antimicrob Agents. 28(4):376-7. https://doi: 10.1016/j.ijantimicag.2006.07.007.

Jombo, G. T. A., Jonah, P., and Ayeni, J. A. (2008). Multidrug resistant Pseudomonas aeruginosa in contemporary medical practice: findings from urinary isolates at a Nigerian University Teaching Hospital. Nigerian Journal of Physiological Sciences, 23(1-2), 105-109. https://doi.org/10.4314/njps.v23i1-2.54944

Kerr, K. G., and Snelling, A. M. (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. Journal of Hospital Infections Dec; 73(4):338-44. [PubMed] https://doi.org/10.1016/j.jhin.2009.04.020

Khalid, F., Siddique, A. B., Nawaz Z., Shafique M., Zahoor, M. A., Nisar, M. A., et al. (2017) Efficacy of bacteriophage against multidrug resistant Pseudomonas aeruginosa isolates. Southeast Asian Journal of Tropical Medicine and Public Health. 48:1056-62

Khan, F., Khan, A., and Kazmi, S. U. (2014). Prevalence and susceptibility pattern of multi drug resistant clinical isolates of Pseudomonas aeruginosa in Karachi. Pakistan Journal of Medical Science. 30:951-4. https://doi.org/10.12669/pjms.305.5400

Khan, H. A., Ahmad, A., and Mehboob, R. (2015) Nosocomial infections and their control strategies. Asian Journal of Biomedical. 5:509-14. https://doi.org/10.1016/j.apjtb.2015.05.001

Lodise, J. R., T. P. (2016). Pseudomonas aeruginosa. Journal of Clinical Infectious Diseases, 63, e61- e111.

Mancuso, G., Midiri, A., Gerace, E., Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10, 1310. https://doi.org/10.3390/pathogens10101310

Moore, N. M., & Flaws, M. L. (2011). Introduction: pseudomonas aeruginosa. International Journal of Clinical laboratory science, 24(1), 41. https://doi.org/10.29074/ascls.24.1.41

Odoki, M., Aliero, A. A., Tibyangye, J., Nyabayo, M. J., Wampande E., Drago, K. C., Ezera, A., Bazira, J. (2019). Prevalence of Bacterial Urinary Tract Infections and Associated Factors among Patients Attending Hospitals in Bushenyi District, Uganda. International Journal of Microbiology 8 p. https://doi.org/10.1155/2019/4246780

Oni, A., Nwaorgu, O., Bakare, R., Ogunkunle, M. and Toki, R. (2002). The discharging ears in Adults in Ibadan, Nigeria causative agents and antimicrobial sensitivity pattern. African Journal of Clinical and Experimental Microbiology, 3(1), 3-5. https://doi.org/10.4314/ajcem.v3i1.7341

Pagani, L., Mantengoli, E., Migliavacca, R., Nucleo, E., Pollini, S., Spalla, M., et al. (2004) Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum β-lactamase in northern Italy. Journal of Clinical Microbiology. 42:2523-9. https://doi.org/10.1128/JCM.42.6.2523-2529.2004

Park, S. C, Park, Y., and Hahm, K. S. (2011). The role of antimicrobial peptides in preventing multidrug- resistant bacterial infections and biofilm formation. International Journal of Molecular Science. 12: 5971-92. https://doi.org/10.3390/ijms12095971

Procop, G. W., Church, D., Hall, G., et al., (2017). Koneman's color atlas and textbook of diagnostic microbiology (Color Atlas & Textbook of Diagnostic Microbiology). Philadelphia, PA: Lippincott, Williams & Wilkins.

Qureshi, R., Shafique, M., Shahid, M., Rasool, M. H., Muzammil, S. (2018). Molecular detection of blaVIM Metallo-β-lactamase producing clinically isolated Pseudomonas aeruginosa from tertiary care hospital, Faisalabad. Pakistan Journal of Pharmaceutical Sciences.31:2673-7.

Samad, A., Khan, A. A., Sajid, M., Zahra, R. (2017). Assessment of biofilm formation by Pseudomonas aeruginosa and hydrodynamic evaluation of microtiter plate assay. Journal of Pakistan Medical Association. 69: 666-71.

Schaber, J. A., Triffo, W. J., Suh, S. J., Oliver, J. W., Hastert, M. C., Griswold, J. A., et al. (2007) Pseudomonas aeruginosa forms biofilms in acute infection independent of cellto-cell signaling. Infect Immun. 75:3715-21. https://doi.org/10.1128/IAI.00586-07

Sinha, M., Ghosh, N., Wijesinghe, D. S., Mathew-Steiner, S. S., Das, A., Singh, K.,Yamazaki, K. (2022). Pseudomonas aeruginosa theft biofilm require host lipids of cutaneous wound. Journals of Surgery. https://doi.org/10.1097/SLA.0000000000005252

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, L., Pulcini, C., Kahlmeter., G., Kluytmans, J., Carmeli, Y., et al. (2018) Discovery, research, and development of new antibiotics:The WHO prioritylist of antibiotic-resistant bacteria and tuberculosis. International Journal of Chemotherapy 18, 327.

Wang, J., Zhou, J. Y., QU, T. T., Shen, P., Wei, Z. Q., Yu, Y. S., et al. (2010). Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. International Journal of Antimicrobials Agents.35: 486-91. https://doi.org/10.1016/j.ijantimicag.2009.12.014

Wozniak, D. J., Wyckoff, T. J., Starkey, M., Keyser, R., Azadi, P., O'Toole, G. A., et al. (2003). Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Nat Acad Sci U S A. 100:7907-12. https://doi.org/10.1073/pnas.1231792100

Downloads

Published

30-12-2023

How to Cite

Mohammed, S., Saleh, A., Abubakar, B., Abdulkadir, B., Tariq, H., & Alhassan, M. (2023). Assessment of Antibiotics Resistance pattern of Pseudomonas aeruginosa Isolated from Patients Admitted in selected Hospitals in Kebbi State, Nigeria. UMYU Journal of Microbiology Research (UJMR), 8(2), 199–206. https://doi.org/10.47430/ujmr.2382.023