Molecular Detection of Macrolide-Induced Clindamycin Resistance Among Clinical Isolates of Staphylococcus aureus from Selected Hospitals in Katsina Metropolis


  • K U Hamza Laboratory department, National Obstetric Fistula Centre, Babbar-Ruga, Katsina, Katsina State, Nigeria
  • B Abdulkadir Department of Microbiology, Umaru Musa Yar’adua University, Katsina, Katsina State, Nigeria
  • Kumurya, A. S. Department of Medical Laboratory Sciences, Faculty of Allied Sciences, Bayero University Kano, Kano State, Nigeria
  • Abubakar, F. Department Microbiology and Parasitology, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Sokoto State, Nigeria
  • Jarmai, M. M. Laboratory department, National Obstetric Fistula Centre, Babbar-Ruga, Katsina, Katsina State, Nigeria
  • Ado, Y. Laboratory department, National Obstetric Fistula Centre, Babbar-Ruga, Katsina, Katsina State, Nigeria
  • Ibraheem, A. O. Laboratory department, National Obstetric Fistula Centre, Babbar-Ruga, Katsina, Katsina State, Nigeria
  • Mba, C. Laboratory department, National Obstetric Fistula Centre, Babbar-Ruga, Katsina, Katsina State, Nigeria
  • Lawal, U. Laboratory department, National Obstetric Fistula Centre, Babbar-Ruga, Katsina, Katsina State, Nigeria
  • Yandutse, M. I. Laboratory Department, Federal Teaching Hospital, Katsina, Katsina State, Nigeria



Antibiotic resistance, D-test, erm Genes, Katsina, MLSB, Staphylococcus aureus


Study’s Novelty Excerpt

  • This study provides a novel assessment of inducible clindamycin resistance in Staphylococcus aureus clinical isolates within Katsina Metropolis, Nigeria, filling a critical gap in regional data.
  • By employing both phenotypic (D-test) and genotypic (PCR) methods, the research uniquely identifies the prevalence of resistance phenotypes and the predominance of the ermC gene among isolates, highlighting the mechanisms behind this resistance.
  • The findings emphasize the need for tailored antibiotic treatment strategies and continuous surveillance to effectively combat the growing challenge of antimicrobial resistance in the region.

Full Abstract

The emergence of inducible clindamycin resistance presents a significant challenge in treating Staphylococcus aureus (S. aureus) infections. This phenotype, evading routine susceptibility testing, compromises treatment efficacy and prolongs patient illness. Despite its clinical importance, limited data exist on its prevalence in Katsina Metropolis, Nigeria. This study aims to assess its prevalence and evaluate the phenotypic and genotypic characteristics among clinical isolates collected from selected hospitals in Katsina Metropolis. S. aureus isolates from various clinical specimens were obtained from three hospitals and identified using standard bacteriological methods. Antibiogram profiles were determined following CLSI guidelines, revealing varying efficacy among commonly prescribed antibiotics. Notably, chloramphenicol (87.8%), clindamycin (79.6%), tetracycline (69.4%), and azithromycin (67.3%) demonstrated high efficacy rates, while cefoxitin, ciprofloxacin, and trimethoprim-sulfamethoxazole exhibited the highest resistance level of (44.9%), (42.9%), and (40.8%) respectively. Prevalence of Macrolide Lincosamide Streptogramin B (MLSB) phenotypes was assessed using the D-test, unveiling specific resistance phenotypes among the isolates. Polymerase chain reaction detected the ermC gene as predominant among D-test-positive isolates, all expressing the iMLSB phenotype. These findings shed light on the prevalence and mechanisms of inducible clindamycin resistance in S. aureus clinical isolates in Katsina Metropolis, emphasizing the importance of tailored treatment strategies and ongoing surveillance in combating antimicrobial resistance effectively


Download data is not yet available.


Adeiza, S. S., Onaolapo, J. A., and Olayinka, B. O. (2019). Exploration of erythromycin ribosomal methylase genotypes among D+ methicillin-resistant S. aureus strains in Sokoto, Nigeria. Mediterranean Journal of Infection, Microbes and Antimicrobials, 8:39.

Bannerman, T. L. (2003) Staphylococcus, Micrococcus, and Other Catalase-Positive Cocci That Grow Aerobically. In: Murray, P. R., Baron, E. J., Jorgensen, J. H., Pfaller, M. A. and Yolken, R. H., Eds., Manual of Clinical Microbiology, 8th Ed American Society for Microbiology, Washington DC, 4(13), 384-404.

Baral, R. and Khanal, B. (2017). Inducible clindamycin resistance in S. aureus strains isolated from clinical samples. International Journal of Biomedical Research, 8(02), 81-84.

Cetin, E. S., Gunes, H., Kaya, S., Aridogan, B. C. and Demirci, M. (2010). Distribution of Genes Encoding Resistance to Macrolides, Lincosamides and Streptogramins Among Clinical Staphylococcal Isolates in a Turkish University Hospital. Journal of Microbiology, Immunology and Infection, 43(6), 524-529.

CLSI. (2023). Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed. 2020 Supplement M100. Wayne, PA. Clinical and Laboratory Standards Institute.

David, M. Z., and Daum, R. S. (2010). Community-Associated Methicillin-Resistant S. aureus: Epidemiology and Clinical Consequences of an Emerging Epidemic. Clinical Microbiology Reviews, 23(3), 616-687.

Gan, T., Shu, G., Fu, H., Yan, Q., Zhang, W., Tang, H., . . .Lin, J. (2021). Antimicrobial resistance and genotyping of Staphylococcus aureus obtained from food animals in Sichuan Province, China. BMC veterinary research, 17(1), 177.

Ghanbari, F., Ghajavand, H., Havaei, R., Jami, M. S., Khademi, F., Heydari, L., . . . Havaei, S. (2016). Distribution of erm genes among S. aureus isolates with inducible resistance to clindamycin in Isfahan, Iran. Advanced Biomedical Research, 5(1), 62. [Crossref]

Harkins, C. P., Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz, A., . . . Holden, M. T. G. (2017). Methicillin-resistant S. aureus emerged long before the introduction of methicillin into clinical practice. Genome Biology, 18(1), 130.

Heyar, A. K., Kaur, K., Gill, A. K. and Gill, P. K. (2020). Induction of clindamycin resistance in clinical isolates of S. aureus from a tertiary care hospital. International Journal of Medical and Biomedical Studies, 4(12).

Javadi, A., Shamaei, M., Mohammadi Ziazi, L., Pourabdollah, M., Dorudinia, A., Seyedmehdi, S. M., and Karimi, S. (2014). Qualification study of two genomic DNA extraction methods in different clinical samples. Tanaffos, 13(4), 41-47.

Kateete, D. P., Kimani, C. N., Katabazi, F. A., Okeng, A., Okee, M. S., Nanteza, A., . . . Najjuka, F. C. (2010). Identification of S. aureus: DNase and Mannitol salt agar improve the efficiency of the tube coagulase test. Annals of Clinical Microbiology and Antimicrobials, 9(1), 1-7.

Khoshnood, S., Shahi, F., Jomehzadeh, N., Abbasi Montazeri, E., Saki, M., Mortazavi, S. M., and Maghsoumi-Norouzabad, L. (2019). Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among methicillin-resistant S. aureus strains isolated from burn patients. Acta Microbiologica et Immunologica Hungarica, 66(3), 387-398.

Koneman, E. W. (2005). Koneman's color atlas and textbook of diagnostic microbiology (color atlas and textbook of diagnostic microbiology) 6th Edition. Lippincott Williams and Wilkins.

Leclercq, R. (2002). Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clinical Infectious Diseases, 34(4), 482-492.

Li, S. M., Zhou, Y. F., Li, L., Fang, L. X., Duan, J. H., Liu, . . . Liu, Y. H. (2018). Characterization of the Multi-Drug Resistance Gene cfr in Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Isolated From Animals and Humans in China. Frontiers in microbiology, 9, 2925.

Mahfouz, A. A., Said, H. S., Elfeky, S. M., and Shaaban, M. I. (2023). Inhibition of

Erythromycin and Erythromycin-Induced Resistance among S. aureus Clinical Isolates. Antibiotics, 12(3), 503.

Medugu, N., Nwajiobi-Princewill, P. I., Shettima, S. A., Mohammed, M. M., Mohammed, Y., Wariso, K., . . . Iregbu, K. C. (2021). A mini- national surveillance study of resistance profiles of S. aureus isolated from clinical specimens across hospitals in Nigeria. Nigerian Journal of Clinical Practice, 24(2), 225-232.

Moosavian, M., Shoja, S., Rostami, S., Torabipour, M. and Farshadzadeh, Z. (2014). Inducible clindamycin resistance in clinical isolates of S. aureus due to erm genes, Iran. Iranian Journal of Microbiology, 6(6), 421-427.

Saderi, H., Emadi, B., and Owlia, P. (2011). Phenotypic and genotypic study of macrolide, lincosamide and streptogramin B (MLSB) resistance in clinical isolates of S. aureus in Tehran, Iran. Medical science monitor: international medical journal of experimental and clinical research, 17(2), 48-53.

Salgueiro, V. C., Iorio, N. L. P., Ferreira, M. C., Chamon, R. C., and Dos Santos, K. R. N. (2017). Methicillin resistance and virulence genes in invasive and nasal Staphylococcus epidermidis isolates from neonates. BMC Microbiology, 17(1), 15.

Spížek, J., and Řezanka, T. (2017). Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochemical pharmacology, 133, 20-28.

Wolters, M., Frickmann, H., Christner, M., Both, A., Rohde, H., Oppong, K., . . .Akenten, C. W. (2020). Molecular Characterization of Staphylococcus aureus Isolated from Chronic Infected Wounds in Rural Ghana. Microorganisms, 8(12), 2052.




How to Cite

Hamza, K. U., Abdulkadir, B., Kumurya, A. S., Abubakar, F., Jarmai, M. M., Ado, Y., Ibraheem, A. O., Mba, C., Lawal, U., & Yandutse, M. I. (2024). Molecular Detection of Macrolide-Induced Clindamycin Resistance Among Clinical Isolates of Staphylococcus aureus from Selected Hospitals in Katsina Metropolis. UMYU Journal of Microbiology Research (UJMR), 1–7.

Most read articles by the same author(s)