Synthesis of Zinc Oxide Nanoparticles using Extract of Cynodon dactylon and Assessment of their Biological Activity against Staphylococcus aureus and Escherichia coli

Authors

DOI:

https://doi.org/10.47430/ujmr.2382.009

Keywords:

Green synthesis, nanoparticles, antibacterial, biosynthesis, nanotechnology

Abstract

Nanotechnology is a groundbreaking technology that that has been widely applied in creating materials which are useful in various fields. It's important to maintain eco-friendly approaches for synthesis of nanoparticles by diversifying the substrate sources. In this study, the researchers used aqueous extract of Cynodon dactylon to synthesize zinc oxide nanoparticles (ZnONPs). Quantitative phytochemical analysis of the extract showed high concentrations of alkaloids, flavonoids, carbohydrates, proteins, amino acids, and phenolic compounds. In contrast, moderate concentrations of tannins, oils, and fats, and low concentrations of phlorotannins, saponin, triterpenoids, and cardiac glycosides were found. Sterols, anthraquinone glycosides, gums, and mucilages were not detected in the extract. The synthesized ZnONPs showed absorbance ranging from 293 nm to 336 nm, with a peak at 307 nm. Fourier transform infrared (FTIR) spectroscopy revealed that the surface of the ZnONPs contained alcohol (intermolecular bonded), alkyne, amine salt, alkane, alkyne, aromatic compounds, conjugated alkene, amine, nitro compound, sulfonyl chloride, alkylaryl ether, and sulfoxide. Dynamic light scatering (DLS) analysis of the ZnONPs showed that its average size was 35.34±1.64 nm, and the polydispersity index was 0.6335. Spectrum of X ray diffraction indicated that peaks formed at 2θ and their corresponding orientation planes are 31.92o (100), 34.62o (002), 36.44o (101), 47.64o (102), 56.84o (110), 63.3o (200), and 68.16o (112). Transmission electron micrograph revealed the spherical shape, and nonuniform sizes of ZnONPs, which ranged from 0.52 nm to 8.32 nm. Antibacterial analysis of biosynthesized ZnONPs recorded 16±3.2 mm and 6.0±2.2 mm; 6.7±2.1 mm and 4.33±1.3 mm, 0.0±0.0 mm and 1.0±1.41 mm, against Staphylococcus aureus and Escherichia coli, at 53.3 mg/mL, 26.7 mg/mL and 13.3 mg/ml concentrations, respectively. At sub-inhibitory concentrations, biosynthesized ZnONPs demonstrated effective dose-dependent antibiofilm formation activity against E. coli and S. aureus. Consequently, extract of Cynodon dactylon is suitable for biosynthesis of ZnONPs with effective antibacterial and antibiofilm formation activities.

Downloads

Download data is not yet available.

References

Akujobi, C. O., Anuforo, H. U., Okereke, J. N., Ibeh, C. and Agbo, C. J. (2020). Parametric Optimization of Synthesis of Silver Nanoparticles from Mangifera indica and Prunus dulcis Extracts and their Antibacterial Activity. Analele Universităţii din Oradea, Fascicula Biologie, 27(1): 21-26.

Al-Shabib, N., Husain, F., Hassan, I., Khan, M., Ahmed, F., Qais,Faizan, M., Oves, R. M., Khan, R. A., Khan, M., Ahmad, I. and Al-Tamimi, J. (2018). Biofabrication of Zinc Oxide Nanoparticle from Ochradenus baccate Leaves: Broad-spectrum Antibiofilm Activity, Protein Binding Studies, and In Vivo Toxicity and Stress Studies. Journal of Nanomaterials, 8612158: 1-15. https://doi.org/10.1155/2018/8612158

Al-Snafi, A. E. (2016). Chemical Constituents and Pharmacological Effects of Cynodon dactylon: A Review. IOSR Journal of Pharmacy, 6(7): 17-31. https://doi.org/10.9790/3013-06721731

Amini, N., Amin, G. and Jafari, A. Z. (2017). Green Synthesis of Silver Nanoparticles using Avena sativa L. Extract. Nanomedicine Research Journal, 2(1): 57-63. https://doi.org/10.22034/nmrj.2017.23588

Angham, T. A. and Lekaa, K. A. K. (2023). Biosynthesis, Characterization, Adsorption and Antimicrobial Studies of Vanadium Oxide Nanoparticles using Punica granatum Extract. Baghdad Science Journal, 2023: 1-12.

Aritonang, H. F., Koleangan, H. and Wuntu, A. D. (2019). Synthesis of Silver Nanoparticles using Aqueous Extract of Medicinal Plants (Impatiens balsamina and Lantana camara) Fresh Leaves and Analysis of Antimicrobial Activity. International Journal of Microbiology, 1: 1-8. https://doi.org/10.1155/2019/8642303

Badran, M. (2014). Formulation and In Vitro Evaluation of Flufenamic Acid Loaded Deformable Liposomes for Improved Skin Delivery. Digest Journal of Nanomaterials and Biostructures, 9: 1-12.

Banu, K. S. and Catherine, L. (2015). General Techniques Involved in Phytochemical Analysis. International Journal of Advanced Research in Chemical Science, 2(4): 25-32.

Bukhari, A., Ijaz, I., Gilani, E., Nazir, A., Zain, H., Saeed, R., Alarfaji, S. S., Husain, S., Aftab, R. and Naseer, Y. (2021). Green Synthesis of Metal and Metal Oxide Nanoparticles using Different Plants' Parts for Antimicrobial and Anticancer Activity. Coatings, 11(11): 1-17. https://doi.org/10.3390/coatings11111374

Chauhan, A., Verma, R., Kumari, S., Sharma, A., Shandilya, P., Li, X., Batoo, K. M., Imran, A., Kulshrestha, S. and Kumar, R. (2020). Photocatalytic Dye Degradation and Antimicrobial Activities of Pure and Ag-doped ZnO using Cannabis sativa Leaf Extract. Scientific Reports, 10(7881): 1-16. https://doi.org/10.1038/s41598-020-64419-0

Çolak, H. and Karak¨ose, E. (2017). Green Synthesis and Characterization of Nanostructured ZnO Thin Films using Citrus aurantifolia (Lemon) Peel Extract by Spin-Coating Method. Journal of Alloys and Compounds, 690: 658–662. https://doi.org/10.1016/j.jallcom.2016.08.090

Dubey, A., Dwivedi, M., Shukla, B. P., Kumar, A. and Tripathi, A. K. (2023). Phytochemistry and Biological uses of Leonotis nepetaefolia (L.) R.BR. Ethanolic Extract zinc Oxide Nanoparticles. Journal of Complementary Medicine Research, 14(5): 85-97. https://doi.org/10.25258/ijpqa.14.3.17

Ejikeme, C. M., Ezeonu, C. S. and Eboatu, A. N. (2014). Determination of Physical and Phytochemical Constituents of Some Tropical Timbers Indigenous to Niger Delta Area of Nigeria. European Scientific Journal, 10(18): 247-270.

El-Hawary, S., Almaksoud, H., Saber, F., Elimam, H., Sayed, A., El-Raey, M. and Abdelmohsen, U. (2021). Green-synthesized Zinc Oxide Nanoparticles, Anti-Alzheimer Potential and the Metabolic Profiling of Sabalblack burniana grown in Egypt Supported by Molecular Modeling. RSC Advances, 11: 18009–18025. https://doi.org/10.1039/D1RA01725J

Erdogan, O., Abbak, M., Demirbolat, G. M., Birtekocak, F., Aksel, M. Pasa, S. and Cevik, O. (2019). Green Synthesis of Silver Nanoparticles Via Cynara scolymus Leaf Extracts: The Characterization, Anticancer Potential with Photodynamic Therapy in MCF7 Cells. PLoS ONE, 14(6): 1-15. https://doi.org/10.1371/journal.pone.0216496

Gamedze, N. P., Mthiyane, M. N., Mavengahama, S., Singh, M. and Onwudiwe, D. C. (2023). Biosynthesis of ZnO Nanoparticles using the Aqueous Extract of Mucuna pruriens (Utilis): Structural Characterization, and the Anticancer and Antioxidant Activities. Chemistry Africa, 2023: 1-10. https://doi.org/10.1007/s42250-023-00750-z

Gungure, A., Jule, L., Ramaswamy, S., Priyanka, D. L., Gudata, L., Nagaraj, N., Mekonen, A. B., and Ramaswamy, K. (2021). Green Synthesis and Characterizations of Zinc Oxide (ZnO) Nanoparticles using Aqueous Leaf Extracts of Coffee (Coffea arabica) and its Application in Environmental Toxicity Reduction. Journal of Nanomaterials, 2: 1-6. https://doi.org/10.1155/2021/3413350

Husain, F. M., Qais, F. A., Ahmad, I., Hakeem, M. J., Baig, M. H. and Masood K. J. (2022). Biosynthesized Zinc Oxide Nanoparticles Disrupt Established Biofilms of Pathogenic Bacteria. Applied Sciences, 12(710): 1-15. https://doi.org/10.3390/app12020710

Kang, M. G., Khan, F., Jo, D. M., Oh, D., Tabassum, N. and Kim, Y. M. (2022). Antibiofilm and Antivirulence Activities of Gold and Zinc Oxide Nanoparticles Synthesized from Kimchi-Isolated Leuconostoc sp. Strain C2. Antibiotics, 11(1524): 1-23. https://doi.org/10.3390/antibiotics11111524

Kulkarni, S. B., Patil, U. M., Salunkhe, R. R., Joshi, S. S. and Lokhande, C. D. (2011). Temperature Impact on Morphological Evolution of ZnO and its Consequent Effect on Physicochemical Properties. Journal of Alloys and Compounds, 509(8): 3486-3492. https://doi.org/10.1016/j.jallcom.2010.12.036

Kumavat, S. R. and Mishra, S. (2021). Green Synthesis of Silver Nanoparticles using Borago officinalis Leaves Extract and Screening its Antimicrobial and Antifungal Activity. International Nano Letters, 1-15. https://doi.org/10.1007/s40089-021-00345-x

Lahiri, D., Ray, R. R., Sarkar, T., Upadhye, V. J., Ghosh, S., Pandit, S., Pati, S., Edinur, H. A., Abdul, K. Z., Nag, M. and Ahmad, M. M. R, (2022) Anti-biofilm Efficacy of Green-synthesized ZnO Nanoparticles on Oral Biofilm: In vitro and silico Study. Frontiers in Microbiology, 13(939390): 1-17. https://doi.org/10.3389/fmicb.2022.939390

Mahamadi, C. and Wunganayi, T. (2018). Green Synthesis of Silver Nanoparticles using Zanthoxylum chalybeum and their Antiprolytic and Antibiotic Properties. Cogent Chemistry, 4: 1-12. https://doi.org/10.1080/23312009.2018.1538547

Raaman, N. (2006). Phytochemical Techniques. New India Publishing Agency, New Delhi, pp.19-25. https://doi.org/10.59317/9789390083404

Sabouri, Z., Kazemi-Oskuee, R., Sabouri, S., Tabrizi, H. M. S. S., Samarghandian, S., Sajid-Abdulabbas, H. and Darroudi, M. (2023). Phytoextract-mediated Synthesis of Ag-doped ZnO-MgO-CaO Nanocomposite using Ocimum basilicum L Seeds Extract as a Highly Efficient Photocatalyst and Evaluation of their Biological Effects. Ceramic International, 49(12): 20989-20997. https://doi.org/10.1016/j.ceramint.2023.03.234

Saxena, M., Saxena, J., Nema, R., Singh, D. and Gupta, A. (2013). Phytochemistry of Medicinal Plants. Journal of Pharmacognosy and Phytochemistry, 1(6): 168-182.

Sigma-Aldrich (2023). Infrared Spectrum Table and Chart. Retrieved from https://www.sigmaaldrich.com/NG/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table on 19th September, 2023.

Smaoui, S., Chérif, I., Ben-Hlima, H., Khan, M., Rebezov, M., Thiruvengadam, M., Sarkar, T., Shariati, M. A. and Lorenzo, J. M. (2023). Zinc Oxide Nanoparticles in Meat Packaging: A Systematic Review of Recent Literature. Food Packaging and Shelf Life, 36(101045): 1-20. https://doi.org/10.1016/j.fpsl.2023.101045

Taylor, P. (2013). Synthesis, Antibacterial Activity, Antibacterial Mechanism and Food Applications of ZnO Nanoparticles: A Review. Food Additive and Contamination, Part A, 31(2): 1–14. https://doi.org/10.1080/19440049.2013.865147

Thakur, A., Thakur, P. and Khurana, S. M. P. (2022). Synthesis and Applications of Nanoparticles. Springer Nature, 459: 1-17. https://doi.org/10.1007/978-981-16-6819-7

Thi, T. U. D., Nguyen, T. T., Thi, Y. D., Thi, K. H. T., Phan, B. T., and Pham, K. N. (2020). Green Synthesis of ZnO Nanoparticles using Orange Fruit Peel Extract for Antibacterial Activities. Royal Society of Chemistry Advances, 10: 23899-23907. https://doi.org/10.1039/D0RA04926C

Turan, N. B., Erkan, H. S., Engin, G. O. and Bilgili, M. S. (2019). Nanoparticles in the Aquatic Environment: Usage, Properties, Transformation, and Toxicity. Process for Safe Environment, 1(130): 238-49. https://doi.org/10.1016/j.psep.2019.08.014

Yadav, A., Jangid, N. K. and Khan, A. U. (2023). Biogenic Synthesis of ZnO Nanoparticles from Evolvulus alsinoides Plant Extract. Journal of Umm Al-Qura University for Applied Sciences, 2023: 1-7. https://doi.org/10.1007/s43994-023-00076-z

Zhao, J., Yan, P., Qureshi, A. and Chiang, Y. W. (2023). How do Material Characteristics and Antimicrobial Mechanisms Affect Microbial Control and Water Disinfection Performance of Metal Nanoparticles? Blue-Green Systems, 00(0): 1-27.

Downloads

Published

30-12-2023

How to Cite

Anuforo, H. U., Ogbulie, T. E., Udebuani, A. C., & Ezeji , E. U. (2023). Synthesis of Zinc Oxide Nanoparticles using Extract of Cynodon dactylon and Assessment of their Biological Activity against Staphylococcus aureus and Escherichia coli. UMYU Journal of Microbiology Research (UJMR), 8(2), 74–85. https://doi.org/10.47430/ujmr.2382.009