Review on the Pre-treatment Advancements of Biogas Production Barriers

Authors

DOI:

https://doi.org/10.47430/ujmr.2381.002

Keywords:

Biogas production, Waste management,, Pre-treatment advancements,, Hazardous wastes,, Future prospects

Abstract

Biogas production is a promising renewable energy source that can reduce greenhouse gas emissions and improve environmental health. Substrate pre-treatment methods, including physical, chemical, and biological methods can increase biogas yields and reduce operational costs. This review assessed the advancements in substrate pre-treatment methods for biogas production, while exploring potential benefits and drawbacks of various techniques. Physical pre-treatment methods, such as chopping, grinding, steam explosion, and high-pressure homogenization, have been found to increase biogas yield despite requiring high energy consumption and expensive equipment. Chemical pre-treatment methods involving acid and alkaline hydrolysis have been effective, but can be costly and generate hazardous wastes. The biological pre-treatment methods utilized microorganisms or enzymes, have advantages of higher biogas yields, shorter process time, and eco-friendliness. Future research can focus on developing more efficient and targeted pre-treatment methods using nanotechnology and genetic engineering, optimizing existing methods, and combining multiple pre-treatment methods to enhance efficiency. Improving pre-treatment methods can lead to benefits such as increased biogas production, reduced costs, and improved waste management practices.

Downloads

Download data is not yet available.

References

Ab Rasid, N. S., Shamjuddin, A., Rahman, A. Z. A. and Amin, N. A. S. (2021). Recent advances in green pre-treatment methods of lignocellulosic biomass for enhanced biofuel production. Journal of Cleaner Production, 321: 129038.https://doi.org/10.1016/j.jclepro.2021.129038

Abduh, M. Y., Ramadhan, C. R., Fadhlilah, A. P., Abdul, S. D. N. and Burhan, K. H. (2022). Solid-state fermentation of groundnut (Arachis hypogaea) shell using Trichoderma sp., tape yeast, and tempeh yeast to produce cellulase. Journal of Applied Biology and Biotechnology, 10(4), 153-160.https://doi.org/10.7324/JABB.2022.100421

Abudi, Z. N., Hu, Z., Abood, A. R., Liu, D. and Gao, A. (2020). Effects of alkali pre-treatment, total solid content, substrate to inoculum ratio, and pH on biogas production from anaerobic digestion of mango leaves. Waste and Biomass Valorization, 11, 887-897.https://doi.org/10.1007/s12649-018-0437-0

Aghbashlo, M., Tabatabaei, M., Soltanian, S. and Ghanavati, H. (2019). Biopower and biofertilizer production from organic municipal solid waste: an exergoenvironmental analysis. Renewable Energy, 143, 64-76.https://doi.org/10.1016/j.renene.2019.04.109

Ahmed, B., Tyagi, S., Rahmani, A. M., Kazmi, A. A., Varjani, S. and Tyagi, V. K. (2022). Novel insight on ferric ions addition to mitigate recalcitrant formation during thermal-alkali hydrolysis to enhance biomethanation. Science of The Total Environment, 829: 154621.https://doi.org/10.1016/j.scitotenv.2022.154621

Ahmed, I., Zia, M. A., Afzal, H., Ahmed, S., Ahmad, M., Akram, Z. and Iqbal, H. M. (2021). Socio-economic and environmental impacts of biomass valorisation: A strategic drive for sustainable bioeconomy. Sustainability, 13(8): 4200.https://doi.org/10.3390/su13084200

Ahmed, S. F., Mofijur, M., Chowdhury, S. N., Nahrin, M., Rafa, N., Chowdhury, A. T. and Ong, H. C. (2022). Pathways of lignocellulosic biomass deconstruction for biofuel and value-added products production. Fuel, 318: 123618.https://doi.org/10.1016/j.fuel.2022.123618

Al Afif, R., and Pfeifer, C. (2021). Enhancement of methane yield from cotton stalks by mechanical pre-treatment. Carbon Resources Conversion, 4: 164-168.https://doi.org/10.1016/j.crcon.2021.04.003

Almomani, F., Bhosale, R. R., Khraisheh, M. A. M. and Shawaqfah, M. (2019). Enhancement of biogas production from agricultural wastes via pre-treatment with advanced oxidation processes. Fuel, 253: 964-974.https://doi.org/10.1016/j.fuel.2019.05.057

Ambrose, H. W., Philip, L., Suraishkumar, G. K., Karthikaichamy, A. and Sen, T. K. (2020). Anaerobic co-digestion of activated sludge and fruit and vegetable waste: Evaluation of mixing ratio and impact of hybrid (microwave and hydrogen peroxide) sludge pre-treatment on two-stage digester stability and biogas yield. Journal of Water Process Engineering, 37: 101498.https://doi.org/10.1016/j.jwpe.2020.101498

Amoo, A.O., Sabo, A. and Adamu, H. (2023a). The Impact of Process Variables on the Quantity and Quality of Biogas Generated from Anaerobic Digestion of Food Waste and Rumen Contents. Ind. Domest. Waste Manag. 3(1): 27-37;https://doi.org/10.53623/idwm.v3i1.196

Amoo, A.O, Ahmed, S., and Haruna, A. (2023b). Combinatorial Effect of Process Parameters on the Rate of Biogas Production and Rate of Substrate Degradation Following Anaerobic Digestion of Food Waste and Rumen Content. J. Appl. Sci. Environ. Manage.,27 (32):445 - 455; https://dx.doi.org/10.4314/jasem.v27i3.7https://doi.org/10.4314/jasem.v27i3.7

Arelli, V., Begum, S., Anupoju, G. R., Kuruti, K. and Shailaja, S. (2018). Dry anaerobic co-digestion of food waste and cattle manure: Impact of total solids, substrate ratio and thermal pretreatment on methane yield and quality of biomanure. Bioresource Technology, 253: 273-280.https://doi.org/10.1016/j.biortech.2018.01.050

Arias, J. Z., Reuter, T., Sabir, A. and Gilroyed, B. H. (2018). Ambient alkaline hydrolysis and anaerobic digestion as a mortality management strategy for whole poultry carcasses. Waste Management, 81: 71-77.https://doi.org/10.1016/j.wasman.2018.09.049

Arman, I., Ansari, K. B., Danish, M., Farooqi, I. H., and Jain, A. K. (2023). Ultrasonic-Assisted Feedstock Disintegration for Improved Biogas Production in Anaerobic Digestion: A Review. BioEnergy Research, 1-16.https://doi.org/10.1007/s12155-023-10608-4

Asghari, M., Samani, B. H., and Ebrahimi, R. (2022). Review on non-thermal plasma technology for biodiesel production: Mechanisms, reactors configuration, hybrid reactors. Energy Conversion and Management, 258: 115514.https://doi.org/10.1016/j.enconman.2022.115514

Askarniya, Z., Sun, X., Wang, Z. and Boczkaj, G. (2023). Cavitation-based technologies for pretreatment and processing of food wastes: Major applications and mechanisms-A review. Chemical Engineering Journal, 454, 140388.https://doi.org/10.1016/j.cej.2022.140388

Atelge, M. R., Atabani, A. E., Banu, J. R., Krisa, D., Kaya, M., Eskicioglu, C. and Duman, F. A. T. İ. H. (2020). A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel, 270: 117494.https://doi.org/10.1016/j.fuel.2020.117494

Atelge, J. O., Obholzer, T., Winkler, K., Jabornig, S. and Rupprich, M. (2018). Combining ultrafiltration and non-thermal plasma for low energy degradation of pharmaceuticals from conventionally treated wastewater. Journal of Environmental Chemical Engineering, 6(6): 7377-7385.https://doi.org/10.1016/j.jece.2018.07.047

Barhoum, A., Jeevanandam, J., Rastogi, A., Samyn, P., Boluk, Y., Dufresne, A. and Bechelany, M. (2020). Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 12(45): 22845-22890.https://doi.org/10.1039/D0NR04795C

Bashir, M. A., Wu, S., Zhu, J., Krosuri, A., Khan, M. U. and Aka, R. J. N. (2022). Recent development of advanced processing technologies for biodiesel production: A critical review. Fuel Processing Technology, 227: 107120.https://doi.org/10.1016/j.fuproc.2021.107120

Begum, S., Anupoju, G. R., & Eshtiaghi, N. (2021). Anaerobic co-digestion of food waste and cardboard in different mixing ratios: Impact of ultrasound pre-treatment on soluble organic matter and biogas generation potential at varying food to inoculum ratios. Biochemical Engineering Journal, 166: 107853.https://doi.org/10.1016/j.bej.2020.107853

Benyahya, Y., Fail, A., Alali, A. and Sadik, M. (2021). Recovery of household waste by generation of biogas as energy and compost as bio-fertilizer-a review. Processes, 10(1): 81.https://doi.org/10.3390/pr10010081

Bergström, D., and Di Fulvio, F. (2019). Review of efficiencies in comminuting forest fuels. International Journal of Forest Engineering, 30(1): 45-55.https://doi.org/10.1080/14942119.2019.1550314

Bhatia, P., Fujiwara, M., Ban, S. and Toda, T. (2020). Effect of steam explosion pre-treatment on methane generation from Ludwigia grandiflora. Biomass and Bioenergy, 142: 105771.https://doi.org/10.1016/j.biombioe.2020.105771

Bhushan, S., Rana, M. S., Bhandari, M., Sharma, A. K., Simsek, H. and Prajapati, S. K. (2021). Enzymatic pretreatment of algal biomass has different optimal conditions for biogas and bioethanol routes. Chemosphere, 284: 131264.https://doi.org/10.1016/j.chemosphere.2021.131264

Bundhoo, Z. M. (2018). Microwave-assisted conversion of biomass and waste materials to biofuels. Renewable and Sustainable Energy Reviews, 82: 1149-1177.https://doi.org/10.1016/j.rser.2017.09.066

Burg, V., Bowman, G., Haubensak, M., Baier, U. and Thees, O. (2018). Valorization of an untapped resource: Energy and greenhouse gas emissions benefits of converting manure to biogas through anaerobic digestion. Resources, Conservation and Recycling, 136: 53-62.https://doi.org/10.1016/j.resconrec.2018.04.004

Capodaglio, A. G. (2021). Pulse electric field technology for wastewater and biomass residues' improved valorization. Processes, 9(5): 736.https://doi.org/10.3390/pr9050736

Cebreiros, F., Seiler, S., Dalli, S. S., Lareo, C. and Saddler, J. (2021). Enhancing cellulose nanofibrillation of eucalyptus Kraft pulp by combining enzymatic and mechanical pretreatments. Cellulose, 28: 189-206.https://doi.org/10.1007/s10570-020-03531-w

Chen, J., Liu, Y., Wang, G., Sun, S., Liu, R., Hong, B. and Bai, K. (2018). Processing optimization and characterization of angiotensin-Ι-converting enzyme inhibitory peptides from lizardfish (Synodus macrops) scale gelatin. Marine Drugs, 16(7): 228.https://doi.org/10.3390/md16070228

Cheng, M. H., Huang, H., Dien, B. S., & Singh, V. (2019). The costs of sugar production from different feedstocks and processing technologies. Biofuels, Bioproducts and Biorefining, 13(3): 723-739.https://doi.org/10.1002/bbb.1976

Chukwuma, O. B., Rafatullah, M., Tajarudin, H. A. and Ismail, N. (2020). Lignocellulolytic enzymes in biotechnological and industrial processes: a review. Sustainability, 12(18): 7282.https://doi.org/10.3390/su12187282

Chukwuma, O. B., Rafatullah, M., Tajarudin, H. A. and Ismail, N. (2021). A review on bacterial contribution to lignocellulose breakdown into useful bio-products. International Journal of Environmental Research and Public Health, 18(11): 6001.https://doi.org/10.3390/ijerph18116001

Dalton, C., Okolie, J. A., Davis, P. and Gunes, B. (2022). Design of a pre-treatment integrated anaerobic digestion treatment facility for decarbonising whiskey industry: A circular economy perspective. Heliyon, 8(5): e09522.https://doi.org/10.1016/j.heliyon.2022.e09522

Dasgupta, A. and Chandel, M. K. (2020). Enhancement of biogas production from organic fraction of municipal solid waste using acid pretreatment. SN Applied Sciences, 2: 1-14.https://doi.org/10.1007/s42452-020-03213-z

Dauknys, R., Mažeikienė, A. and Paliulis, D. (2020). Effect of ultrasound and high voltage disintegration on sludge digestion process. Journal of Environmental Management, 270: 110833.https://doi.org/10.1016/j.jenvman.2020.110833

de Oliveira, T. B. and Rodrigues, A. (2019). Ecology of thermophilic fungi. Fungi in Extreme Environments, 39-57.https://doi.org/10.1007/978-3-030-19030-9_3

Den, W., Sharma, V. K., Lee, M., Nadadur, G. and Varma, R. S. (2018). Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Frontiers in Chemistry, 6: 141.https://doi.org/10.3389/fchem.2018.00141

Deng, C., Kang, X., Lin, R. and Murphy, J. D. (2020). Microwave assisted low-temperature hydrothermal treatment of solid anaerobic digestate for optimising hydrochar and energy recovery. Chemical Engineering Journal, 395: 124999.https://doi.org/10.1016/j.cej.2020.124999

Dewi, P., Indrati, R. and Millati, R. (2021). Effect of aeration on the growth and sporulation of Aspergillus niger in cassava stalks bioconversion. Journal of Physics, 1918(5): 052006.https://doi.org/10.1088/1742-6596/1918/5/052006

Dey, A. and Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing, 3(3): 64.https://doi.org/10.3390/jmmp3030064

Donkor, K. O., Gottumukkala, L. D., Lin, R. and Murphy, J. D. (2022). A perspective on the combination of alkali pre-treatment with bioaugmentation to improve biogas production from lignocellulose biomass. Bioresource Technology, 126950.https://doi.org/10.1016/j.biortech.2022.126950

Drévillon, L., Koubaa, M. and Vorobiev, E. (2018). Lipid extraction from Yarrowia lipolytica biomass using high-pressure homogenization. Biomass and Bioenergy, 115: 143-150.https://doi.org/10.1016/j.biombioe.2018.04.014

Eng, A. and Borenstein, E. (2019). Microbial community design: methods, applications, and opportunities. Current Opinion in Biotechnology, 58: 117-128.https://doi.org/10.1016/j.copbio.2019.03.002

Ferdeș, M., Dincă, M. N., Moiceanu, G., Zăbavă, B. Ș. and Paraschiv, G. (2020). Microorganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: a review. Sustainability, 12(17): 7205.https://doi.org/10.3390/su12177205

Ferreira, R. G., Azzoni, A. R. and Freitas, S. (2021). On the production cost of lignocellulose‐degrading enzymes. Biofuels, Bioproducts and Biorefining, 15(1): 85-99.https://doi.org/10.1002/bbb.2142

Filipe, J., Bessa, R. J., Reis, M., Alves, R. and Póvoa, P. (2019). Data-driven predictive energy optimization in a wastewater pumping station. Applied Energy, 252: 113423.https://doi.org/10.1016/j.apenergy.2019.113423

Garcia, N. H., Mattioli, A., Gil, A., Frison, N., Battista, F. and Bolzonella, D. (2019). Evaluation of the methane potential of different agricultural and food processing substrates for improvedbiogas production in rural areas. Renewable and Sustainable Energy Reviews, 112: 1-10.https://doi.org/10.1016/j.rser.2019.05.040

Garcia-Ochoa, F., Gomez, E. and Santos, V. E. (2020). Fluid dynamic conditions and oxygen availability effects on microbial cultures in STBR: An overview. Biochemical Engineering Journal, 164: 107803.https://doi.org/10.1016/j.bej.2020.107803

Garuti, M., Sinisgalli, E., Soldano, M., Fermoso, F. G., Rodriguez, A. J., Carnevale, M., & Gallucci, F. (2022). Mechanical pretreatments of different agri-based feedstock in full-scale biogas plants under real operational conditions. Biomass and Bioenergy, 158: 106352.https://doi.org/10.1016/j.biombioe.2022.106352

Gomes, M. G., de Oliveira Paranhos, A. G., Camargos, A. B., Baêta, B. E. L., Baffi, M. A., Gurgel, L. V. A. and Pasquini, D. (2022). Pretreatment of sugarcane bagasse with dilute citric acid and enzymatic hydrolysis: Use of black liquor and solid fraction for biogas production. Renewable Energy, 191: 428-438.https://doi.org/10.1016/j.renene.2022.04.057

Govarthanan, M., Manikandan, S., Subbaiya, R., Krishnan, R. Y., Srinivasan, S., Karmegam, N. and Kim, W. (2022). Emerging trends and nanotechnology advances for sustainable biogas production from lignocellulosic waste biomass: a critical review. Fuel, 312:122928.https://doi.org/10.1016/j.fuel.2021.122928

Gu, Y. M., Park, S. Y., Park, J. Y., Sang, B. I., Jeon, B. S., Kim, H., & Lee, J. H. (2021). Impact of Attrition Ball-Mill on Characteristics and Biochemical Methane Potential of Food Waste. Energies, 14(8): 2085.https://doi.org/10.3390/en14082085

Gunes, B., Stokes, J., Davis, P., Connolly, C. and Lawler, J. (2019). Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review. Renewable and Sustainable Energy Reviews, 113: 109281.https://doi.org/10.1016/j.rser.2019.109281

Gunes, B., Stokes, J., Davis, P., Connolly, C. and Lawler, J. (2021). Optimisation of anaerobic digestion of pot ale after thermochemical pre-treatment through Response Surface Methodology. Biomass and Bioenergy, 144: 105902.https://doi.org/10.1016/j.biombioe.2020.105902

Hafeez, A., Taqvi, S. A. A., Fazal, T., Javed, F., Khan, Z., Amjad, U. S. and Rehman, F. (2020). Optimization on cleaner intensification of ozone production using Artificial Neural Network and Response Surface Methodology: Parametric and comparative study. Journal of Cleaner Production, 252: 119833.https://doi.org/10.1016/j.jclepro.2019.119833

Halder, P., Kundu, S., Patel, S., Setiawan, A., Atkin, R., Parthasarthy, R. and Shah, K. (2019). Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids. Renewable and Sustainable Energy Reviews, 105: 268-292.https://doi.org/10.1016/j.rser.2019.01.052

Hallaji, S. M., Siami, S. and Aminzadeh, B. (2019). Improvement of anaerobic digestion of sewage sludge, using combined hydrogen peroxide and thermal pre-treatment. Pollution, 5(3): 487-499.

Hashemi, B., Sarker, S., Lamb, J. J. and Lien, K. M. (2021). Yield improvements in anaerobic digestion of lignocellulosic feedstocks. Journal of Cleaner Production, 288: 125447.https://doi.org/10.1016/j.jclepro.2020.125447

Hassan, S. S., Williams, G. A. and Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262: 310-318.https://doi.org/10.1016/j.biortech.2018.04.099

Janke, L., Weinrich, S., Leite, A. F., Sträuber, H., Radetski, C. M., Nikolausz, M. and Stinner, W. (2018). Year-round biogas production in sugarcane biorefineries: Process stability, optimization and performance of a two-stage reactor system. Energy Conversion and Management, 168: 188-199.https://doi.org/10.1016/j.enconman.2018.04.101

Jankovičová, B., Hutňan, M., Czӧlderová, M. N., Hencelová, K. and Imreová, Z. (2022). Comparison of acid and alkaline pre-treatment of lignocellulosic materials for biogas production. Plant, Soil and Environment, 68(4): 195-204.https://doi.org/10.17221/421/2021-PSE

Jaronski, S. T. (2023). Mass production of entomopathogenic fungi-state of the art. Mass Production of Beneficial Organisms, 317-357.https://doi.org/10.1016/B978-0-12-822106-8.00017-8

Kainthola, J., Podder, A., Fechner, M. and Goel, R. (2021). An overview of fungal pretreatment processes for anaerobic digestion: applications, bottlenecks and future needs. Bioresource Technology, 321: 124397.https://doi.org/10.1016/j.biortech.2020.124397

Kaldis, F., Cysneiros, D., Day, J., G. Karatzas, K. A., & Chatzifragkou, A. (2020). Anaerobic digestion of steam-exploded wheat straw and co-digestion strategies for enhanced biogas production. Applied Sciences, 10(22): 8284.https://doi.org/10.3390/app10228284

Kamperidou, V., & Terzopoulou, P. (2021). Anaerobic digestion of lignocellulosic waste materials. Sustainability, 13(22), 12810.https://doi.org/10.3390/su132212810

Kannah, R. Y., Kavitha, S., Karthikeyan, O. P., Rene, E. R., Kumar, G. and Banu, J. R. (2021). A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. Bioresource Technology, 332: 125055.https://doi.org/10.1016/j.biortech.2021.125055

Karuppiah, T. and Azariah, V. E. (2019). Biomass pretreatment for enhancement of biogas production. Anaerobic Digestion, 150: 111509.https://doi.org/10.5772/intechopen.82088

Kazimierowicz, J., Dębowski, M. and Zieliński, M. (2023). The Synergistic Effect of Simultaneous Ultrasound Heating and Disintegration on theTechnological Efficiency and Energetic Balance of Anaerobic Digestion of High-Load Slaughter Poultry Sewage. Applied Sciences, 13(4): 2420.https://doi.org/10.3390/app13042420

Kiptoo, M. K., Lotfy, M. E., Adewuyi, O. B., Conteh, A., Howlader, A. M. and Senjyu, T. (2020). Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Conversion and Management, 215: 112917.https://doi.org/10.1016/j.enconman.2020.112917

Koniuszewska, I., Korzeniewska, E., Harnisz, M. and Czatzkowska, M. (2020). Intensification of biogas production using various technologies: A review. International Journal of Energy Research, 44(8): 6240-6258.https://doi.org/10.1002/er.5338

Kovačić, Đ., Rupčić, S., Kralik, D., Jovičić, D., Spajić, R. and Tišma, M. (2021). Pulsed electric field: An emerging pretreatment technology in a biogas production. Waste Management, 120: 467-483.https://doi.org/10.1016/j.wasman.2020.10.009

Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V. and Verma, P. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 199: 106244.https://doi.org/10.1016/j.fuproc.2019.106244

Kumar, M. N., Ravikumar, R., Sankar, M. K. and Thenmozhi, S. (2018). New insight into the effect of fungal mycelia present in the bio-pretreated paddy straw on their enzymatic saccharification and optimization of process parameters. Bioresource Technology, 267: 291-302.https://doi.org/10.1016/j.biortech.2018.07.003

Kusi, O. A., Premjet, D. and Premjet, S. (2018). A Review Article of Biological Pre-Treatment of Agricultural Biomass. Pertanika Journal of Tropical Agricultural Science, 41(1): 366.

Lan, T. Q., Wang, S. R., Li, H., Qin, Y. Y. and Yue, G. J. (2020). Effect of lignin isolated from p-toluenesulfonic acid pretreatment liquid of sugarcane bagasse on enzymatic hydrolysis of cellulose and cellulase adsorption. Industrial Crops and Products, 155: 112768.https://doi.org/10.1016/j.indcrop.2020.112768

Lee, B., Park, J. G., Shin, W. B., Kim, B. S., Byun, B. S. and Jun, H. B. (2019). Maximizing biogas production by pretreatment and by optimizing the mixture ratio of co-digestion with organic wastes. Environmental Engineering Research, 24(4): 662-669.https://doi.org/10.4491/eer.2018.375

Lee, C. Y., Cheu, R. K., Lemke, M. M., Gustin, A. T., France, M. T., Hampel, B. and Arnold, K.B. (2020). Quantitative modeling predicts mechanistic links between pre-treatment microbiome composition and metronidazole efficacy in bacterial vaginosis. Nature Communications, 11(1): 6147.https://doi.org/10.1038/s41467-020-19880-w

Lee, M. E., Steiman, M. W., & Angelo, S. K. S. (2021). Biogas digestate as a renewable fertilizer: effects of digestate application on crop growth and nutrient composition. Renewable Agriculture and Food Systems, 36(2): 173-181.https://doi.org/10.1017/S1742170520000186

Li, Y., Chen, Y., & Wu, J. (2019). Enhancement of methane production in anaerobic digestion process: A review. Applied Energy, 240: 120-137.https://doi.org/10.1016/j.apenergy.2019.01.243

Liang, J., Nabi, M., Zhang, P., Zhang, G., Cai, Y., Wang, Q. and Ding, Y. (2020). Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renewable and Sustainable Energy Reviews, 134: 110335.https://doi.org/10.1016/j.rser.2020.110335

Liao, Y. T., Matsagar, B. M., & Wu, K. C. W. (2018). Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass. ACS Sustainable Chemistry & Engineering, 6(11): 13628-13643.https://doi.org/10.1021/acssuschemeng.8b03683

Lindberg, L., Ermolaev, E., Vinnerås, B. and Lalander, C. (2022). Process efficiency and greenhouse gas emissions in black soldier fly larvae composting of fruit and vegetable waste with and without pre-treatment. Journal of Cleaner Production, 338: 130552.https://doi.org/10.1016/j.jclepro.2022.130552

Liu, Y., Gong, H., He, S., Shi, C., Yuan, H., Zuo, X. and Li, X. (2021). Utilizing hydrolysis and acidification via liquid fraction of digestate (LFD-HA) for methane production enhancement of corn straw: Physicochemical and microbial community characterization. Journal of Cleaner Production, 326: 129282.https://doi.org/10.1016/j.jclepro.2021.129282

Lu, J., and Gao, X. (2021). Biogas: Potential, challenges, and perspectives in a changing China. Biomass and Bioenergy, 150: 106127.https://doi.org/10.1111/jbi.14222

Makamure, F., Mukumba, P. and Makaka, G. (2021). An analysis of bio-digester substrate heating methods: A review. Renewable and Sustainable Energy Reviews, 137: 110432.https://doi.org/10.1016/j.rser.2020.110432

Maktabifard, M., Zaborowska, E. and Makinia, J. (2018). Achieving energy neutrality in wastewater treatment plants through energy savings and enhancing renewable energy production. Reviews in Environmental Science and Bio/Technology, 17: 655-689.https://doi.org/10.1007/s11157-018-9478-x

Maneein, S., Milledge, J. J., Nielsen, B. V. and Harvey, P. J. (2018). A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation, 4(4): 100.https://doi.org/10.3390/fermentation4040100

M'Arimi, M. M., Mecha, C. A., Kiprop, A. K. and Ramkat, R. (2020). Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production. Renewable and Sustainable Energy Reviews, 121: 109669.https://doi.org/10.1016/j.rser.2019.109669

Marks, S., Dach, J., Fernandez Morales, F. J., Mazurkiewicz, J., Pochwatka, P. and Gierz, Ł. (2020). New trends in substrates and biogas systems in Poland. Journal of Ecological Engineering, 21(4):7639.https://doi.org/10.12911/22998993/119528

Masebinu, S. O., Akinlabi, E. T., Muzenda, E., and Aboyade, A. O. (2019). A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renewable and Sustainable Energy Reviews, 103: 291-307.https://doi.org/10.1016/j.rser.2018.12.048

Menzel, T., Neubauer, P., and Junne, S. (2020). Role of microbial hydrolysis in anaerobic digestion. Energies, 13(21): 5555.https://doi.org/10.3390/en13215555

Mihiretu, G. T., Chimphango, A. F. and Görgens, J. F. (2019). Steam explosion pre-treatment of alkali-impregnated lignocelluloses for hemicelluloses extraction and improved digestibility. Bioresource Technology, 294: 122121.https://doi.org/10.1016/j.biortech.2019.122121

Mirmohamadsadeghi, S., Karimi, K., Azarbaijani, R., Yeganeh, L. P., Angelidaki, I., Nizami, A. S. and Tabatabaei, M. (2021). Pretreatment of lignocelluloses for enhanced biogas production: a review on influencing mechanisms and the importance of microbial diversity. Renewable and Sustainable Energy Reviews, 135: 110173.https://doi.org/10.1016/j.rser.2020.110173

Mlaik, N., Khoufi, S., Hamza, M., Masmoudi, M. A. and Sayadi, S. (2019). Enzymatic pre-hydrolysis of organic fraction of municipal solid waste to enhance anaerobic digestion. Biomass and Bioenergy, 127: 105286.https://doi.org/10.1016/j.biombioe.2019.105286

Mohapatra, S., Mishra, S. S., Paul, M. and Thatoi, H. (2020). Lignolytic enzymes from fungus: a consolidated bioprocessing approach for bioethanol production. In Frontiers in Soil and Environmental Microbiology, 167-180.https://doi.org/10.1201/9780429485794-18

Mozhiarasi, V. (2022). Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario. Chemosphere, 288: 132604.https://doi.org/10.1016/j.chemosphere.2021.132604

Mulat, D. G., Dibdiakova, J., and Horn, S. J. (2018). Microbial biogas production from hydrolysis lignin: insight into lignin structural changes. Biotechnology for Biofuels, 11: 1-16.https://doi.org/10.1186/s13068-018-1054-7

Munoz-Almagro, N., Morales-Soriano, E., Villamiel, M. and Condezo-Hoyos, L. (2021). Hybrid high-intensity ultrasound and microwave treatment: A review on its effect on quality and bioactivity of foods. Ultrasonics Sonochemistry, 80: 105835.https://doi.org/10.1016/j.ultsonch.2021.105835

Nabi, M., Zhang, G., Li, F., Zhang, P., Wu, Y., Tao, X. and Dai, J. (2020). Enhancement of high pressure homogenization pretreatment on biogas production from sewage sludge: A review. Desalinization and Water Treatment, 175: 341-351.https://doi.org/10.5004/dwt.2020.24670

Nadir, N., Ismail, N. L. and Hussain, A. S. (2019). Fungal pretreatment of lignocellulosic materials. In Biomass for Bioenergy-Recent Trends and Future Challenges. IntechOpen.https://doi.org/10.5772/intechopen.84239

Nahak, B. K., Preetam, S., Sharma, D., Shukla, S. K., Syväjärvi, M., Toncu, D. C., & Tiwari, A. (2022). Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production. Renewable and Sustainable Energy Reviews, 161, 112393.https://doi.org/10.1016/j.rser.2022.112393

Nasiri, S. and Khosravani, M. R. (2020). Progress and challenges in fabrication of wearable sensors for health monitoring. Sensors and Actuators, 312: 112105.https://doi.org/10.1016/j.sna.2020.112105

Nasrollahzadeh, M., Sajadi, S. M., Sajjadi, M. and Issaabadi, Z. (2019). An introduction to nanotechnology. In Interface science and technology; Elsevier. (28): 1-27).https://doi.org/10.1016/B978-0-12-813586-0.00004-3

Nava-Valente, N., Del Ángel-Coronel, O. A., Atenodoro-Alonso, J. and López-Escobar, L. A. (2023). Effect of thermal and acid pre-treatment on increasing organic loading rate of anaerobic digestion of coffee pulp for biogas production. Biomass Conversion and Biorefinery, 13(6): 4817-4830.

Nguyen, V. K., Chaudhary, D. K., Dahal, R. H., Trinh, N. H., Kim, J., Chang, S. W. and Nguyen, D. D. (2021). Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105.https://doi.org/10.1016/j.fuel.2020.119105

Nsair, A., Onen Cinar, S., Alassali, A., Abu Qdais, H. and Kuchta, K. (2020). Operational parameters of biogas plants: A review and evaluation study. Energies, 13(15): 3761.https://doi.org/10.3390/en13153761

Nwokolo, N., Mukumba, P., Obileke, K. and Enebe, M. (2020). Waste to energy: A focus on the impact of substrate type in biogas production. Processes, 8(10): 1224.https://doi.org/10.3390/pr8101224

Olatunji, K. O., Ahmed, N. A. and Ogunkunle, O. (2021). Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnology for Biofuels, 14(1): 1-34.https://doi.org/10.1186/s13068-021-02012-x

Onumaegbu, C., Mooney, J., Alaswad, A. and Olabi, A. G. (2018). Pre-treatment methods for production of biofuel from microalgae biomass. Renewable and Sustainable Energy Reviews, 93: 16-26.https://doi.org/10.1016/j.rser.2018.04.015

Panigrahi, S. and Dubey, B. K. (2019). A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renewable Energy, 143: 779-797.https://doi.org/10.1016/j.renene.2019.05.040

Panigrahi, A., Saxena, S. and Jain, P. (2023). A Review on Performance Improvement of Anaerobic Digestion Using Co-Digestion of Food Waste and Sewage Sludge. Journal of Environmental Management, 338: 117733.https://doi.org/10.1016/j.jenvman.2023.117733

Patil, R., Cimon, C., Eskicioglu, C. and Goud, V. (2021). Effect of ozonolysis and thermal pre-treatment on rice straw hydrolysis for the enhancement of biomethane production. Renewable Energy, 179: 467-474.https://doi.org/10.1016/j.renene.2021.07.048

Periyasamy, S., Isabel, J. B., Kavitha, S., Karthik, V., Mohamed, B. A., Gizaw, D. G. and Aminabhavi, T. M. (2023). Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol-a review. Chemical Engineering Journal, 453: 139783.https://doi.org/10.1016/j.cej.2022.139783

Petravić-Tominac, V., Nastav, N., Buljubašić, M. and Šantek, B. (2020). Current state of biogas production in Croatia. Energy, Sustainability and Society, 10(1): 1-10.https://doi.org/10.1186/s13705-020-0243-y

Pilli, S., Pandey, A. K., Katiyar, A., Pandey, K. and Tyagi, R. D. (2020). Pre-treatment technologies to enhance anaerobic digestion. In sustainable sewage sludge management and resource efficiency. London, UK: IntechOpen: pp. 23.https://doi.org/10.5772/intechopen.93236

Poddar, B. J., Nakhate, S. P., Gupta, R. K., Chavan, A. R., Singh, A. K., Khardenavis, A. A., and Purohit, H. J. (2022). A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology: 1-28.

Prajapati, P., Varjani, S., Singhania, R. R., Patel, A. K., Awasthi, M. K., Sindhu, R. and Chaturvedi, P. (2021). Critical review on technological advancements for effective waste management of municipal solid waste-Updates and way forward. Environmental Technology & Innovation, 23: 101749.https://doi.org/10.1016/j.eti.2021.101749

Pramanik, S. K., Suja, F. B., Zain, S. M. and Pramanik, B. K. (2019). The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresource Technology Reports, 8: 100310.https://doi.org/10.1016/j.biteb.2019.100310

Rahmani, A. M., Gahlot, P., Moustakas, K., Kazmi, A. A., Ojha, C. S. P. and Tyagi, V. K. (2022). Pretreatment methods to enhance solubilization and anaerobic biodegradability of lignocellulosic biomass (wheat straw): Progress and challenges. Fuel, 319: 123726.https://doi.org/10.1016/j.fuel.2022.123726

Ramamoorthy, N. K., Nagarajan, R., Ravi, S. and Sahadevan, R. (2020). An innovative plasma pre-treatment process for lignocellulosic bio-ethanol production. Energy Sources: 1-15.https://doi.org/10.1080/15567036.2020.1815900

Ramos, A., Monteiro, E. and Rouboa, A. (2022). Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods-A review. Energy Conversion and Management, 270: 116271.https://doi.org/10.1016/j.enconman.2022.116271

Raseetha, S., Aida, F. M. N. A., Chompoorat, P., Murtini, E. S., Fuggate, P., Roslan, N. F. A., and Nur-Diana, S. A. (2022). Disintegration with considerable changes in form: cutting/dicing, crushing and grinding, shredding, sheeting, and pulping. In Postharvest and Postmortem Processing of Raw Food Materials: 181-240.https://doi.org/10.1016/B978-0-12-818572-8.00004-8

Rosales‐Calderon, O., Pereira, B. and Arantes, V. (2021). Economic assessment of the conversion of bleached eucalyptus Kraft pulp into cellulose nanocrystals in a stand‐alone facility via acid and enzymatic hydrolysis. Biofuels, Bioproducts and Biorefining, 15(6): 1775-1788.https://doi.org/10.1002/bbb.2277

Saeedian, K., Shojaosadati, S. A., Zamir, S. M. and Mohammadi, A. (2022). Increasing-Aeration Strategy: A Practical Approach to Enhance the Schizophyllan Production and Improve the Operational Conditions of Schizophyllum commune Cultivation in the Stirred Tank and Bubble Column Bioreactors. Applied Biochemistry and Biotechnology, 194(5): 2284-2300.https://doi.org/10.1007/s12010-021-03777-5

Safavi, S. M. and Unnthorsson, R. (2018). Enhanced methane production from pig slurry with pulsed electric field pre-treatment. Environmental Technology, 39(4): 479-489.https://doi.org/10.1080/09593330.2017.1304455

Sanusi, I. A., Sewsynker-Sukai, Y. and Gueguim-Kana, E. B. (2021). Nanotechnology in Bioprocess Development: Applications of Nanoparticles in the Generation of Biofuels. Microbial Nanobiotechnology: 165-184.https://doi.org/10.1007/978-981-33-4777-9_6

Schimpf, U. and Schulz, R. (2019). Industrial by-products from white-rot fungi production. Part II: application in anaerobic digestion for enzymatic treatment of hay and straw. Process Biochemistry, 76: 142-154.https://doi.org/10.1016/j.procbio.2018.10.006

Sepehri, A. and Sarrafzadeh, M. H. (2019). Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO 2 mitigation intensification process. Applied Water Science, 9: 1-12.https://doi.org/10.1007/s13201-019-1017-6

Sharif, A., Raza, S. A., Ozturk, I. and Afshan, S. (2019). The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: a global study with the application of heterogeneous panel estimations. Renewable Energy, 133: 685-691.https://doi.org/10.1016/j.renene.2018.10.052

Shrestha, B., Hernandez, R., Fortela, D. L. B., Sharp, W., Chistoserdov, A., Gang, D. and Zappi, M. E. (2020). A review of pretreatment methods to enhance solids reduction during anaerobic digestion of municipal wastewater sludges and the resulting digester performance: Implications to future urban biorefineries. Applied Sciences, 10(24): 9141.https://doi.org/10.3390/app10249141

Sidana, A. and Yadav, S. K. (2022). Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. Journal of Cleaner Production, 335: 130286.https://doi.org/10.1016/j.jclepro.2021.130286

Siddiki, S. Y. A., Uddin, M. N., Mofijur, M., Fattah, I. M. R., Ong, H. C., Lam, S. S. and Ahmed, S. F. (2021). Theoretical calculation of biogas production and greenhouse gas emission reduction potential of livestock, poultry and slaughterhouse waste in Bangladesh. Journal of Environmental Chemical Engineering, 9(3): 105204.https://doi.org/10.1016/j.jece.2021.105204

Singh, B., Kovács, K. L., Bagi, Z., Nyári, J., Szepesi, G. L., Petrik, M. and Szamosi, Z. (2021). Enhancing efficiency of anaerobic digestion by optimization of mixing regimes using helical ribbon impeller. Fermentation, 7(4): 251.https://doi.org/10.3390/fermentation7040251

Singh, B., Szamosi, Z. and Siménfalvi, Z. (2020). Impact of mixing intensity and duration on biogas production in an anaerobic digester: a review. Critical Reviews in Biotechnology, 40(4): 508-521.https://doi.org/10.1080/07388551.2020.1731413

Singh, G. and Patidar, S. K. (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management, 217: 499-508.https://doi.org/10.1016/j.jenvman.2018.04.010

Singh, S. K. (2021). Biological treatment of plant biomass and factors affecting bioactivity. Journal of Cleaner Production, 279: 123546.https://doi.org/10.1016/j.jclepro.2020.123546

Srivastava, A. K., Singh, R. K. and Singh, D. (2021). Microbe-based bioreactor system for bioremediation of organic contaminants: present and future perspective. In Microbe mediated remediation of environmental contaminants: 241-253.https://doi.org/10.1016/B978-0-12-821199-1.00020-1

Stanley, J. T., Thanarasu, A., Kumar, P. S., Periyasamy, K., Raghunandhakumar, S., Periyaraman, P. and Subramanian, S. (2022). Potential pre-treatment of lignocellulosic biomass for the enhancement of biomethane production through anaerobic digestion-A review. Fuel, 318: 123593.https://doi.org/10.1016/j.fuel.2022.123593

Strieder, M. M., Silva, E. K. and Meireles, M. A. A. (2021). Advances and innovations associated with the use of acoustic energy in food processing: An updated review. Innovative Food Science & Emerging Technologies, 74: 102863.https://doi.org/10.1016/j.ifset.2021.102863

Strobel, S. A., Knowles, L., Nitin, N., Scher, H. B. and Jeoh, T. (2020). Comparative technoeconomic process analysis of industrial-scale microencapsulation of bioactives in cross-linked alginate. Journal of Food Engineering, 266: 109695.https://doi.org/10.1016/j.jfoodeng.2019.109695

Sudalyandi, K. and Jeyakumar, R. (2022). Hydrolysis and Assessment. In Biofuel Production Using Anaerobic Digestion.. Singapore: Springer Nature Singapore: 53-84https://doi.org/10.1007/978-981-19-3743-9

Suman, A. (2021). Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal. Renewable and Sustainable Energy Reviews, 151: 111524.https://doi.org/10.1016/j.rser.2021.111524

Sun, H., Li, J., Cui, X., Stinner, W., Guo, J. and Dong, R. (2021). Enhancement mechanism of biogas potential from lignocellulosic substrates in the ensiling process via acid-based hydrolysis and biological degradation. Journal of Cleaner Production, 319: 128826.https://doi.org/10.1016/j.jclepro.2021.128826

Szwarc, D. and Głowacka, K. (2021). Increasing the Biogas Potential of Rapeseed Straw Using Pulsed Electric Field Pre-Treatment. Energies, 14(24): 8307.https://doi.org/10.3390/en14248307

Szwarc, D. and Szwarc, K. (2020). Use of a pulsed electric field to improve the biogas potential of maize silage. Energies, 14(1): 119.https://doi.org/10.3390/en14010119

Szwarc, D., Nowicka, A., & Głowacka, K. (2022). Cross-Comparison of the Impact of Grass Silage Pulsed Electric Field and Microwave-Induced Disintegration on Biogas Production Efficiency. Energies, 15(14), 5122.https://doi.org/10.3390/en15145122

Tai, W. Y., Tan, J. S., Lim, V. and Lee, C. K. (2019). Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Biotechnology Progress, 35(3): e2781.https://doi.org/10.1002/btpr.2781

Tedersoo, L., Anslan, S., Bahram, M., Drenkhan, R., Pritsch, K., Buegger, F. and Abarenkov, K. (2020). Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Frontiers in Microbiology, 11: 1953.https://doi.org/10.3389/fmicb.2020.01953

Thiruselvi, D., Kumar, P. S., Kumar, M. A., Lay, C. H., Aathika, S., Mani, Y. and Show, P. L. (2021). A critical review on global trends in biogas scenario with its up-gradation techniques for fuel cell and future perspectives. International Journal of Hydrogen Energy, 46(31): 16734-16750.https://doi.org/10.1016/j.ijhydene.2020.10.023

Tobin, T., Gustafson, R., Bura, R. and Gough, H. L. (2020). Integration of wastewater treatment into process design of lignocellulosic biorefineries for improved economic viability. Biotechnology for Biofuels, 13(1): 1-16.https://doi.org/10.1186/s13068-020-1657-7

Trianni, A., Cagno, E. and Accordini, D. (2019). Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption. Applied Energy, 252: 113481.https://doi.org/10.1016/j.apenergy.2019.113481

Tsavkelova, E., Prokudina, L., Egorova, M., Leontieva, M., Malakhova, D. and Netrusov, A. (2018). The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas. Process Biochemistry, 66: 183-196.https://doi.org/10.1016/j.procbio.2017.12.006

Usmani, Z., Sharma, M., Awasthi, A. K., Lukk, T., Tuohy, M. G., Gong, L. and Gupta, V. K. (2021). Lignocellulosic biorefineries: the current state of challenges and strategies for efficient commercialization. Renewable and Sustainable Energy Reviews, 148: 111258.https://doi.org/10.1016/j.rser.2021.111258

Vasconcelos, M. H., Mendes, F. M., Ramos, L., Dias, M. O. S., Bonomi, A., Jesus, C. D. F. and dos Santos, J. C. (2020). Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: Identification of technological bottlenecks and economic feasibility of dilute acid pretreatment. Energy, 199: 117422.https://doi.org/10.1016/j.energy.2020.117422

Vats, N., Khan, A. A. and Ahmad, K. (2020). Options for enhanced anaerobic digestion of waste and biomass-a review. Journal of Biosystems Engineering, 45: 1-15.https://doi.org/10.1007/s42853-019-00040-y

Vyas, S., Prajapati, P., Shah, A. V., Srivastava, V. K. and Varjani, S. (2022). Opportunities and knowledge gaps in biochemical interventions for mining of resources from solid waste: a special focus on anaerobic digestion. Fuel, 311: 122625.https://doi.org/10.1016/j.fuel.2021.122625

Wagle, A., Angove, M. J., Mahara, A., Wagle, A., Mainali, B., Martins, M. and Paudel, S. R. (2022). Multi-stage pre-treatment of lignocellulosic biomass for multi-product biorefinery: A review. Sustainable Energy Technologies and Assessments, 49: 101702.https://doi.org/10.1016/j.seta.2021.101702

Wahid, R., Romero-Guiza, M., Moset, V., Møller, H. B. and Fernández, B. (2020). Improved anaerobic biodegradability of wheat straw, solid cattle manure and solid slaughterhouse by alkali, ultrasonic and alkali-ultrasonic pre-treatment. Environmental Technology, 41(8): 997-1006.https://doi.org/10.1080/09593330.2018.1516802

Walker, D. J., Gallagher, J., Winters, A., Somani, A., Ravella, S. R. and Bryant, D. N. (2018). Process optimization of steam explosion parameters on multiple lignocellulosic biomass using Taguchi method-a critical appraisal. Frontiers in Energy Research, 6: 46.https://doi.org/10.3389/fenrg.2018.00046

Wang, D., Yan, L., Ma, X., Wang, W., Zou, M., Zhong, J. and Liu, D. (2018). Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. International Journal of Biological Macromolecules, 119: 453-461.https://doi.org/10.1016/j.ijbiomac.2018.07.133

Wang, Q. and Astruc, D. (2019). State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 120(2): 1438-1511.https://doi.org/10.1021/acs.chemrev.9b00223

Wang, Z., Hu, Y., Wang, S., Wu, G. and Zhan, X. (2023). A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies. Renewable and Sustainable Energy Reviews, 176: 113208.https://doi.org/10.1016/j.rser.2023.113208

Weber, B., Estrada-Maya, A., Sandoval-Moctezuma, A. C. and Martínez-Cienfuegos, I. G. (2019). Anaerobic digestion of extracts from steam exploded Agave tequilana bagasse. Journal of Environmental Management, 245: 489-495.https://doi.org/10.1016/j.jenvman.2019.05.093

Wong, L. P., Isa, M. H. and Bashir, M. J. (2018). Disintegration of palm oil mill effluent organic solids by ultrasonication: Optimization by response surface methodology. Process Safety and Environmental Protection, 114: 123-132.https://doi.org/10.1016/j.psep.2017.12.012

Wright, A., Rollinson, A., Yadav, D., Lisowski, S., Iza, F., Holdich, R. and Bandulasena, H. H. (2020). Plasma-assisted pre-treatment of lignocellulosic biomass for anaerobic digestion. Food and Bioproducts Processing, 124: 287-295.https://doi.org/10.1016/j.fbp.2020.09.005

Wu, D., Peng, X., Li, L., Yang, P., Peng, Y., Liu, H. and Wang, X. (2021). Commercial biogas plants: Review on operational parameters and guide for performance optimization. Fuel, 303: 121282.https://doi.org/10.1016/j.fuel.2021.121282

Wu, D., Wei, Z., Mohamed, T. A., Zheng, G., Qu, F., Wang, F. and Song, C. (2022). Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere, 286: 131635.https://doi.org/10.1016/j.chemosphere.2021.131635

Xu, B., Azam, S. R., Feng, M., Wu, B., Yan, W., Zhou, C. and Ma, H. (2021). Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review. Ultrasonics Sonochemistry, 81: 105855.https://doi.org/10.1016/j.ultsonch.2021.105855

Xu, N., Liu, S., Xin, F., Zhou, J., Jia, H., Xu, J. and Dong, W. (2019). Biomethane production from lignocellulose: biomass recalcitrance and its impacts on anaerobic digestion. Frontiers in Bioengineering and Biotechnology, 7: 191.https://doi.org/10.3389/fbioe.2019.00191

Yang, Y., Wang, J., Chong, K. and Bridgwater, A. V. (2018). A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. Energy Conversion and Management, 174: 406-416.https://doi.org/10.1016/j.enconman.2018.08.033

Yu, Y., Wu, J., Ren, X., Lau, A., Rezaei, H., Takada, M. and Sokhansanj, S. (2022). Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review. Renewable and Sustainable Energy Reviews, 154: 111871.https://doi.org/10.1016/j.rser.2021.111871

Yue, L., Cheng, J., Tang, S., An, X., Hua, J., Dong, H. and Zhou, J. (2021). Ultrasound and microwave pretreatments promote methane production potential and energy conversion during anaerobic digestion of lipid and food wastes. Energy, 228: 120525.https://doi.org/10.1016/j.energy.2021.120525

Zafar, H., Peleato, N. and Roberts, D. (2022). A review of the role of pre-treatment on the treatment of food waste using microbial fuel cells. Environmental Technology Reviews, 11(1): 72-90.https://doi.org/10.1080/21622515.2022.2058426

Zahan, Z. and Othman, M. Z. (2019). Effect of pre-treatment on sequential anaerobic co-digestion of chicken litter with agricultural and food wastes under semi-solid conditions and comparison with wet anaerobic digestion. Bioresource Technology, 281: 286-295.https://doi.org/10.1016/j.biortech.2019.01.129

Zamri, M. F. M. A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A. H., Mofijur, M. and Mahlia, T. M. I. (2021). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137: 110637.https://doi.org/10.1016/j.rser.2020.110637

Zhang, B. and Poon, C. S. (2018). Sound insulation properties of rubberized lightweight aggregate concrete. Journal of Cleaner Production, 172: 3176-3185.https://doi.org/10.1016/j.jclepro.2017.11.044

Zhang, L., Duan, H., Ye, L., Liu, L., Batstone, D. J. and Yuan, Z. (2019). Increasing capacity of an anaerobic sludge digester through FNA pre-treatment of thickened waste activated sludge. Water Research, 149: 406-413.https://doi.org/10.1016/j.watres.2018.11.008

Zia, M., Ahmed, S. and Kumar, A. (2022). Anaerobic digestion (AD) of fruit and vegetable market waste (FVMW): potential of FVMW, bioreactor performance, co-substrates, and pre-treatment techniques. Biomass Conversion and Biorefinery, 12(8): 3573-3592.https://doi.org/10.1007/s13399-020-00979-5

Zulkifli, Z. B., Rasit, N. B., Umor, N. A. and Ismail, S. (2018). The effect of A. fumigatus SK1 and Trichoderma sp. on the biogas production from cow manure. Malaysian Journal of Fundamental and Applied Science, 14: 353-359.https://doi.org/10.11113/mjfas.v14n3.1066

Downloads

Published

30-06-2023

How to Cite

Amoo, A.O., Ijanu, E.M., Haruna, A., Adeleye, A.O, & Sabo, A. (2023). Review on the Pre-treatment Advancements of Biogas Production Barriers. UMYU Journal of Microbiology Research (UJMR), 8(1), 6–30. https://doi.org/10.47430/ujmr.2381.002