Gas Chromatographic evaluation of hydrocarbon degradation capabilities of Phyllosphere-derived Bacteria in simulated bioremediation of contaminated soil
DOI:
https://doi.org/10.47430/ujmr.25101.003Keywords:
Hydrocarbon-degradation, GC-FID, phyllosphere bacteria, bioremediation, aliphatic hydrocarbons, PAHsAbstract
Study’s Excerpt:
• GC-FID enabled precise tracking of hydrocarbon degradation over a 60-day microcosm study.
• A phyllosphere-derived bacterial consortium boosted 1-Docosene levels by over two-fold.
• Kocuria kristinae EN3 uniquely accumulated a fluorinated ester during hydrocarbon breakdown.
• Natural attenuation showed strong indigenous activity, enriching cyclic hydrocarbons in soil.
• Individual strains showed distinct degradation profiles, producing varied hydrocarbon byproducts.
Full Abstract:
Monitoring hydrocarbon degradation is critical to assessing environmental pollution and the effectiveness of bioremediation strategies. Phyllosphere bacteria residing on plant surfaces have been shown to play a vital role in breaking down hydrocarbons; however, there is limited understanding of the compound-specific degradation patterns within the complex microbial communities present in the phyllosphere. This study evaluated the hydrocarbon-degrading capacities of four phyllosphere-derived isolates (Kocuria kristinae EN3, Pseudomonas oleovorans EP3, Pseudomonas aeruginosa EP4, and EP7) and a mixed-species consortium in comparison to natural attenuation in simulated bioremediation of contaminated soil (soil micrococosm) using Gas chromatography-flame ionization (GC-FID) analysis. Soil microcosms were amended with 5 g kg⁻¹ spent engine oil and inoculated with either individual isolates (~10⁸ CFU g⁻¹), the consortium (equal proportions of all four strains), or left uninoculated (natural attenuation). Incubation proceeded for 60 days at 28 °C under aerobic conditions. GC-FID analyzed hydrocarbon profiles at day 0 and day 60 to quantify relative peak areas and identify emergent byproducts. Results revealed that the consortium achieved a 2-fold increase in 1-Docosene (from 14.3% to 29.5% area) and produced shorter alkanes (Hexadecane, 0.20%; 1-Hexane, 0.99%). Individual strains displayed divergent patterns: EP3 eliminated mid-chain alkanes and generated halogenated byproducts (e.g., trichloromethane, 0.52%), EN3 uniquely accumulated a fluorinated ester (Octacosyl heptafluorobutyrate, 13.7%), and EP7 selectively enriched 1-Docosene (22.4%). Natural attenuation mirrored many effects of the consortium, with cyclic hydrocarbons (Cyclohexane) increasing from 0.71% to 15.2%, indicating substantial indigenous activity. In conclusion, this study highlights the efficacy of GC-FID in tracking hydrocarbon degradation and the potential of phyllosphere bacteria in bioremediation. Future research should focus on optimizing bacterial consortia for field-scale applications.
Downloads
References
Atlas, R. M., and Bartha, R. (1992). Bioremediation: Applied Microbial Solutions for Real-World Problems. In Bioremediation of Aquatic and Terrestrial Ecosystems (pp. 1-17). Springer.
Balogun, K.I., Arekemase, M.O., Oyeyiola, G.P.and Ameen, M.O. (2015). Investigations on Biodegradative Potentials of Bacteria from Oil-Polluted Soils on Biodiesel, Biodiesel Blend and Petrodiesel. The Bioscientist 3(1), 1-13.
Booth, A. M., Sørensen, L., Brakstad, O. G., Ribicic, D., Creese, M., Arey, J. S., Lyon, D. Y., Redman, A. D., Martin-Aparicio, A., Camenzuli, L., Wang, N., & Gros, J. (2023). Comprehensive Two-Dimensional Gas Chromatography with Peak Tracking for Screening of Constituent Biodegradation in Petroleum UVCB Substances. Environmental science & technology, 57(34), 12583–12593. https://doi.org/10.1021/acs.est.3c01624
Charalampous, G., Fragkou, E., Kormas, K. A., Menezes, A. B. D., Polymenakou, P. N., Pasadakis, N., Kalogerakis, N., Antoniou, E., and Gontikaki, E. (2021). Comparison of Hydrocarbon-Degrading Consortia from Surface and Deep Waters of the Eastern Mediterranean Sea: Characterization and Degradation Potential. Energies, 14(8), 2246. https://doi.org/10.3390/en14082246
Dellagnezze, B., De Sousa, G., Martins, L., Domingos, D., Limache, E., De Vasconcellos, S., Da Cruz, G., and De Oliveira, V. (2014). Bioremediation potential of microorganisms derived from petroleum reservoirs. Marine pollution bulletin, 89 1-2, 191-200. https://doi.org/10.1016/j.marpolbul.2014.10.003
Fuchs, G., Piotrowski, R., and Rother, M. (2011). Bacterial metabolism of aromatic hydrocarbons. Nature Reviews Microbiology, 9(11), 942-957. https://doi.org/10.1038/nrmicro2696
Gentile, G., Bonsignore, M., Santisi, S., Catalfamo, M., Giuliano, L., Genovese, L., Yakimov, M., Denaro, R., Genovese, M., and Cappello, S. (2016). Biodegradation potentiality of psychrophilic bacterial strain Oleispira antarctica RB-8(T). Marine pollution bulletin, 105 1, 125-30. https://doi.org/10.1016/j.marpolbul.2016.02.041
Huang, T., Chen, J., Yang, Q., Zhang, Y., and Ding, R. (2012). Biodegradation of Heavy Oil with High Asphaltene Content by Kocuria sp. Asian Journal of Chemistry, 24(6), 2717–2720. Retrieved from https://asianpubs.org/index.php/ajchem/article/view/9212
Ibrahim, F., Salisu, B., Isah, M., & Kaware, M. S. (2024). Isolation and Characterization of Phyllosphere Bacteria and their Bioremediation-Potential of Spent Engine Oil Contaminated Soil. UMYU Journal of Microbiology Research, 9(2), 249–260. https://doi.org/10.47430/ujmr.2492.028
Mamdoh, T. J. (2018). Application of hydrocarbon degrading halophilic bacterial strains as an indicator to locate crude oil reservoirs in Atlantis II deep in Red Sea. Int. J. of Adv. Res. in Bio. Sci. 5 (12), 30-36.
Molaei, S., Moussavi, G., Talebbeydokhti, N., and Shekoohiyan, S. (2021). Biodegradation of the petroleum hydrocarbons using an anoxic packed-bed biofilm reactor with in-situ biosurfactant-producing bacteria. Journal of hazardous materials, 421, 126699. https://doi.org/10.1016/j.jhazmat.2021.126699
Nisar, N., Fareed, A., Naqvi, S. T. A., Zeb, B. S., Amin, B. A. Z., Khurshid, G., and Zaffar, H. (2025). Biodegradation Study of Used Engine Oil by Free and Immobilized Cells of the Pseudomonas oleovorans Strain NMA and Their Growth Kinetics. ACS Omega, 10(1), 541–549. doi:10.1021/acsomega.4c06964
Olowomofe, T. O., Oluyege, J. O., Aderiye, B. I., and Oluwole, O. A. (2019). Degradation of poly aromatic fractions of crude oil and detection of catabolic genes in hydrocarbon-degrading bacteria isolated from Agbabu bitumen sediments in Ondo State. AIMS Microbiology, 5(4), 308–323. doi:10.3934/microbiol.2019.4.308
Patowary, K., Patowary, R., Kalita, M. C., and Deka, S. (2016). Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites. Frontiers in Microbiology, Volume 7-2016. https://doi.org/10.3389/fmicb.2016.01092
Poddar, K., Sarkar, D., and Sarkar, A. (2019). Construction of potential bacterial consortia for efficient hydrocarbon degradation. International Biodeterioration and Biodegradation. https://doi.org/10.1016/j.ibiod.2019.104770
Rani, A., Kumar, M., and Gupta, R. (2015). Phyllosphere bacteria: A source of bioremediation. Applied Microbiology and Biotechnology, 99(6), 5573-5585. https://doi.org/10.1007/s00253-015-6493-1
Rhoads, W. J., et al. (2014). Biodegradation of petroleum hydrocarbons: A review. Biodegradation, 25(6), 741-755. https://doi.org/10.1007/s10532-014-9719-7
Salisu, B., and Ibrahim, F. (2024). Microbial Bioremediation of Spent Engine Oil : Current Advances , Challenges , and Future Directions. Umyu Scientifica, 3(4), 260–274. https://doi.org/10.56919/usci.2434.020
Santisi, S., Catalfamo, M., Bonsignore, M., Gentile, G., Di Salvo, E., Genovese, M., Mahjoubi, M., Cherif, A., Mancini, G., Hassanshahian, M., Pioggia, G. and Cappello, S. (2019), Biodegradation ability of two selected microbial autochthonous consortia from a chronically polluted marine coastal area (Priolo Gargallo, Italy). J Appl Microbiol, 127: 618-629. https://doi.org/10.1111/jam.14246
Santos, L. E., et al. (2018). Evaluation of gas chromatography for the analysis of petroleum hydrocarbons in environmental samples. Journal of Chromatography A, 1557, 68-76. https://doi.org/10.1016/j.chroma.2018.06.054
Scheublin, T., Deusch, S., Moreno-Forero, S., Müller, J., Van Der Meer, J., and Leveau, J. (2014). Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environmental microbiology, 16 7, 2212-25. https://doi.org/10.1111/1462-2920.12375
Silva Monteiro, J. P., da Silva, A. F., Delgado Duarte, R. T., and José Giachini, A. (2024). Exploring Novel Fungal–Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation. Toxics, 12(12), 913. https://doi.org/10.3390/toxics12120913
Tian, X., Wang, X., Peng, S., Wang, Z., Zhou, R., and Tian, H. (2018). Isolation, screening, and crude oil degradation characteristics of hydrocarbons-degrading bacteria for treatment of oily wastewater. Water science and technology : a journal of the International Association on Water Pollution Research, 78 12, 2626-2638. https://doi.org/10.2166/wst.2019.025
Tsioulpas, A., et al. (2021). Advances in gas chromatography for the analysis of environmental samples. Journal of Chromatography, 1624, 461301. https://doi.org/10.1016/j.chroma.2021.461301
Yessentayeva, K., Reinhard, A., Berzhanova, R., Mukasheva, T., Urich, T., and Mikolasch, A. (2024). Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support. Applied microbiology and biotechnology, 108(1), 189. https://doi.org/10.1007/s00253-024-13010-y
Zhou, Z., et al. (2016). Environmental impact of petroleum hydrocarbon pollution. Environmental Science and Pollution Research, 23(5), 4884-4898. https://doi.org/10.1007/s11356-015-5682-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Baha'uddeen Salisu, Fatima Ibrahim, Musa Sani Kaware, Musa Isah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.