Production of Bio-Fertilizer through Composting of Tannery Wastes with Cow- Dung and Rice Bran

Authors

  • Lambu, Z.N., Department of Microbiology, Kano University of Science and Technology, Wudil
  • Shamsuddeen, U. Department of Microbiology, Bayero University Kano.
  • Yahaya, S. Department of Microbiology, Bayero University Kano.
  • Aliyu, A.S. Department of Microbiology, Kano University of Science and Technology, Wudil
  • Karfi, A.I. Department of Microbiology, Kano University of Science and Technology, Wudil
  • Isyaku, J., Department of Microbiology, Kano University of Science and Technology, Wudil
  • Mahmud, T. Department of Microbiology, Kano University of Science and Technology, Wudil
  • Y. S. Mohammed Department of Basic Science, College of Nursing and Midwifery, Kano

DOI:

https://doi.org/10.47430/ujmr.2161.001

Keywords:

Composting,, Tannery wastes,, bio-fertilizer

Abstract

Tannery waste is made from nutrients and organic compounds that enhance soil fertility thereby improving plants and microbial growths. This study was designed to investigate the application of tannery wastes to form compost material in a mixture with cow-dung and rice brand. The treatments were prepared and tested for a period of sixty (60) days. The compost was characterized by electric conductivity (EC) of 10.11µs/cm, pH of 7.62 and Carbon-Nitrogen (C:N) ratio of 28.8. Total concentrations of Chromium, Lead, Cadmium, Copper, Zinc and Iron in mg/kg were 57.2, 0.92, 12.50, 60.50, 13.60 and 1101.00 respectively. However, total bacterial counts decreased from 8.2 x108cfu/g to 1.8 x106cfu/g after the 60days. The compost characteristics indicate about 80% germination index which may suggest the removal of most of the phototoxic compounds.

Downloads

Download data is not yet available.

References

Anderson, R.A. (1981). Bioavailability of chromium in soil. Sci. Total Environ., 17:13-29.

https://doi.org/10.1016/0048-9697(81)90104-2

Beck-Friis, B., Smårs, S., Jönsson, H., Kirchmann, H., (2001). Emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J. Agric. Eng. Res, 78, 423-430.

https://doi.org/10.1006/jaer.2000.0662

Bernal, M.P., Alburquerque, J.A, Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment: a review. BioresourTechnol, 100:5444-5453.

https://doi.org/10.1016/j.biortech.2008.11.027

Bernal, M.P., Sanchez-Monedero, M.A. Paredes, C., and Roig, A., (1998). Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agr. Ecosyst. Environ., 69:175-189.

https://doi.org/10.1016/S0167-8809(98)00106-6

Bollen D. and Volker G. (1996).The Hygienic Standard of meat handling in the Tamale metropolis. BSc. Dissertation, University for Development Studies, Tamale Ghana 23-29pp.

Boulter, J.I., Boland, G.J, Trevors, J.T. (2001). Compost: a study of the development process and end-product potential for suppression of turfgrass disease. W J Microbio Biotech, 16(2):115-134.

https://doi.org/10.1023/A:1008901420646

Boulter-Bitzer, I.J., Trevors, J.T., Boland, G.J. (2006). A polyphasic approach for assessing maturity and stability in compost intended for suppression of plant pathogen. Appl. Soil Ecol, 34, 65- 81.

https://doi.org/10.1016/j.apsoil.2005.12.007

Chaney, R.L. and Ryan, J.A. (1993). Heavy metal and toxic organic pollutants in MSW- composts. In: Hoitink, H.A.J., Keener H.M. (Eds.). Science and engineering of composting: Design, Environmental, Microbiological and Utilization Aspects. Worthington, Ohio: Renaissance Publications, pp. 451-506.

Diaz, S., Crowe, J. D., Olsson, S. (2002). Induction of laccase activity in Rhizoctoniasolani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl. Environ. Microbiol. 67(5):2088-2094.

https://doi.org/10.1128/AEM.67.5.2088-2094.2001

Downer, Dalhammar, G., Borg-Karlson, A. K. (2008). Practical use of quality compost for plant health and vitality improvement. Microbiology of composting Pp 435-444.

Elorrietal, E., M., Dalhammar, G., Borg-Karlson,

A. K. (2006). Biological degradation of

selected hydrocarbons in an old PAH/creosote contaminated soil from a gas work site. Appl. Microbiol. Biotechnol. 53(5):619-626.

https://doi.org/10.1007/s002530051667

Eno, J.U., Trenchard, O.I., Joseph A.O., Anthony. O A., Ivara E.E., (2009) "Manual Of Soil, Plant and water Analysis": Lagos, Sibon Book Ltd

Fayolle, G. Tamine, A.Y., Robinson, R.K. (2006). Soil Science and Technology. 3rd ed. Cambridge, Woodhead Publishing Limited p. 808.

Fekedu, S., María, G.B., Ingrid, H.F. (2014) Coffee husk composting: An investigation of the process using molecular and non-molecular tools. Waste Management 34 (2014) 642-652

https://doi.org/10.1016/j.wasman.2013.11.010

Fliessbatch K.B, Tamine, A.Y., Robinson, R.K. (2006) Microbial diversity in synthetic compost as revealed by PCR- Amplified rRNA sequences from cultivated isolates and extracted DNA. Microbial Ecology. Pp 207-216.

Gomez-Brandon, M., Lazcanoa, C., Domíngueza, J. (2008). The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 70:436-444.

https://doi.org/10.1016/j.chemosphere.2007.06.065

Hassen, A., Belguith, K., Jedidi, N., Cherif, A., Cherif, M., Boudabous, A., (2001). Microbial characterization during composting of municipal solid waste. Bioresour. Technol. 80, 217-225.

https://doi.org/10.1016/S0960-8524(01)00065-7

Innebrebner, Mazzola, M., Granatstein, D. M., Elfving, D. C., Mullinix, K., Gu, Y. H. (2006).Cultural management of microbial community structure to enhance growth of apple in replant soils. Phytopathology 92(12):1363-1366.

https://doi.org/10.1094/PHYTO.2002.92.12.1363

Irshad, M., Eneji, E., Hussain, Z. and Ashraf, M. (2013).Chemical characterization of fresh and composted livestock manures. Journal of Soil Science and Plant Nutrition 13, 115-121.

https://doi.org/10.4067/S0718-95162013005000011

Lisk, D.J., Gutenmann, W.H., Rutzke, M., Kuntz, H.T., and Chu, G. (1992). Toxic materials in the soil. Arch. Environ. Contam. Toxicol., 22:190-194.

https://doi.org/10.1007/BF00213284

Liu, J., Xu, X. H., Li, H. and Xu, Y. (2011).

Effect of microbiological inocula on chemical and physical properties and microbial community of cow manure compost. Biomass and Bioenergy 35, 3233-3439.

Logan, T.J., He, T.X. a n d Traina S.J. ( 1992). Chemical Properties ofMunicipal Solidwastecomposts. J.Environ. Qual., 21:318-329

https://doi.org/10.2134/jeq1992.00472425002100030003x

Logan, T.J., Lindsay, B.J., Goins, L.E., & Ryan,

J.A. (1997). Field assessment of sludge bioavailabilty to crops: Sludge response. J. Environ. Qual. 26, 534- 550.

https://doi.org/10.2134/jeq1997.00472425002600020027x

https://doi.org/10.2134/jeq1997.262534x

https://doi.org/10.2134/jeq1997.2661605x

Mahdi, A., AZNI, I., SYED, S. R. O. (2007).

Physicochemical Characterization of Compost of the Industrial Tannery Sludge. Journal of Engineering Science and Technology Vol. 2, No. 1, 81-94

NurulAin, A N., Ibrahim M.H., Hariz, A., NurAlyani, S. (2011). Microbial population assessment during IMO- composting production: Malaysian Journal of Microbiology, Vol 11(1) 2015, pp. 47-53

Ouatmane, A., Provenzano, M.R., Hafidi, M., and Senesi, N. (2000). Compostmaturity assessment using calorimetry, spectroscopy and chemical analysis. Compost Sci.Utilisat. 8, 124-134.

https://doi.org/10.1080/1065657X.2000.10701758

Pan, I., and Sen, S.K. (2013). Microbial and Physico-chemical Analysis of Composting Process of Wheat straw: Indian Journal of Biotechnology vol. 12 January, 2013. Pp 120-128

Pourcher, K., Jay, Y., Mount, .J. (2005). Modern Food Technology. Aspen Pub. Inc. Grathernburg, Mary land. Pp . 113- 128.

Riegel, E.R. (1949). Leather gelatin and glue. In: Industrial Chemistry. Reinhold Publisher Co., New York, p. 759-765.

Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., Swings, J. (2003). Microbiological Aspects of biowaste during composting in a monitored compost bin. J ApplMicrobiol, 94(1):127-137.

https://doi.org/10.1046/j.1365-2672.2003.01800.x

Sánchez-Monedero, M.A., Roig, A., Paredes, C., Bernal, M.P., (2001). Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour. Technol. 78, 301-308.

https://doi.org/10.1016/S0960-8524(01)00031-1

Senesi, N. (1989). Composted materials as organic fertilizers. Sci. Total Environ., 82:521-542.

https://doi.org/10.1016/0048-9697(89)90161-7

Walkey, A. and Black C.A (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chronic acidification method. Soil Sci. , 37: 29- 38.

https://doi.org/10.1097/00010694-193401000-00003

Zhu, N. (2007).Effect of low C/N ratio on aerobic composting of swine manure with rice straw. Bioresource Technology 98, 9-13.

https://doi.org/10.1016/j.biortech.2005.12.003

Zucconi F, Forte M, Monaco A, De Bartoldi M (1981). Biological evaluation of compost maturity. Biocycle, 22:27-29.

Downloads

Published

30-06-2021

How to Cite

Lambu, Z.N., Shamsuddeen, U., Yahaya, S., Aliyu, A.S., Karfi, A.I., Isyaku, J., Mahmud, T., & Y. S. Mohammed. (2021). Production of Bio-Fertilizer through Composting of Tannery Wastes with Cow- Dung and Rice Bran. UMYU Journal of Microbiology Research (UJMR), 6(1), 1–10. https://doi.org/10.47430/ujmr.2161.001

Most read articles by the same author(s)