Antibacterial Activity of Adansonia digitata Leaf Extract against Gastrointestinal Bacterial Isolates
DOI:
https://doi.org/10.47430/ujmr.25103.034Keywords:
Adansonia digitata, Phytochemical constituents, S. aureus and E. coli, Plant extracts antibacterial activityAbstract
Study’s Excerpt:
- digitata ethanolic leaf extract shows strong antibacterial activity against E. coli & S. aureus.
- Phytochemicals (alkaloids, saponins, phenols) in digitata contribute to antibacterial effects.
- Ethanolic extract outperforms aqueous, with wider inhibition zones (19mm vs. 13.5mm for S. aureus).
- Study calls for standardized extraction methods & clinical trials to validate digitata’s therapeutic potential.
Full Abstract:
Adansonia digitata (A. digitata), also known as baobab, is a traditional medicinal plant that has been shown to possess antibacterial properties. This study was carried out to determine the antibacterial activity of aqueous and ethanolic extracts of A. digitata leaves against Escherichia coli and Staphylococcus aureus isolated from the human gastrointestinal tract (GIT). The leaf extract was screened for its phytochemical constituents to evaluate the availability of active compounds. The leaves extract was subjected to antibacterial analysis by agar well diffusion method using different concentrations. The phytochemical screening revealed the presence of alkaloids, saponins, phenol, tannins and steroids. Ethanolic leaf extracts exhibited inhibitory effects against S. aureus (19±1.78 to 9.6±2.09mm) and E. coli (18.4±1.19 to 11.4±1.07mm) across concentrations of 100 to 12.5mg/ml. Aqueous extracts also showed activity with zones ranging from 13.5±2.00 to 6.3±0.3mm for S. aureus and 15.1±1.60 to 7.00±1.04mm for E. coli. The ethanolic leaf extract inhibited the growth of E. coli and S. aureus at a concentration of 12.5-50mg/ml with a minimum bactericidal concentration (MBC) at 25-50mg/ml. The aqueous leaves extract inhibited the growth of S. aureus and E. coli at a concentration of 25-100mg/ml with an MBC of 50-100mg/ml. The results indicate that Adansonia digitata ethanolic leaf extract has a higher level of bioactive components contributing to its strong antibacterial effect against the pathogenic bacteria. The antibacterial activity of Adansonia digitata leaves extract against E. coli and S. aureus. These findings support the need for standardised methods of extraction and processing to maintain consistency. Further research, including clinical studies and mechanistic evaluation, is warranted.
Downloads
References
Abalaka, M. E., Daniyan, S. Y., & Mann, A. (2010). Evaluation of antimicrobial activities of two Ziziphus species (Ziziphus mauritiana L. and Ziziphus spina-christi L.) on some microbial pathogens. African Journal of Pharmacy and Pharmacology, 4(4), 135–139.
Abbasi, P., Kargar, M., Doosti, A., Mardaneh, J., Ghorbani-Dalini, S., & Dehyadegari, M. (2015). Enteroaggregative Escherichia coli (EAEC): An emerging enteric pathogen in south of Iran. Journal of Medical Bacteriology, 3(3–4), 40–46.
Abdullah, M. S., & Muhammad, A. (2019). Antibacterial activity of leaf and stem bark extracts of Adansonia digitata against Escherichia coli and Salmonella Typhi grown in Potiskum, Yobe State, Nigeria. Annals of Microbiology and Infectious Diseases, 2(1), 31–37. https://doi.org/10.22259/2637-5346.0201005
Agbafor, K. N., & Nwachukwu, N. (2011). Phytochemical analysis and antioxidant property of leaf extracts of Vitex doniana and Mucuna pruriens. International Journal of Biochemistry Research, 2, 7–9. https://doi.org/10.1155/2011/459839
Ajiboye, A. E., Sadiq, S. O., & Adedayo, M. R. (2020). Antimicrobial activity and phytochemical screening of Adansonia digitata stem bark extract on some clinical isolates. Ife Journal of Science, 22(2), 034–044. https://doi.org/10.4314/ijs.v22i2.4
Ajijolakewu, K. A., & Awarun, F. J. (2015). Comparative antibacterial efficacy of Vitellaria paradoxa (shea butter tree) extract against some clinical bacterial isolates. Notulae Scientia Biologicae, 7(3), 264–268. https://doi.org/10.15835/nsb739617
Akwu, N. A., Naidoo, Y., Singh, M., Nundkumar, N., & Lin, J. (2019). Phytochemical screening, in vitro evaluation of the antimicrobial, antioxidant and cytotoxicity potentials of Grewia lasiocarpa E. Mey. ex Harv. South African Journal of Botany, 123, 180–192. https://doi.org/10.1016/j.sajb.2019.03.004
Ali, M., Yahaya, A., Zage, A. U., & Yusuf, Z. M. (2017). In-vitro antibacterial activity and phytochemical screening of Psidium guajava on some enteric bacterial isolates of public health importance. Journal of Advances in Medical and Pharmaceutical Sciences, 12, 1–7. https://doi.org/10.9734/JAMPS/2017/31126
Amin, M. M., Sawhney, S. S., & Jassal, M. S. (2013). Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. Journal of Pharmaceutical and Pharmacology, 2(1), 001–005.
Barakat, H., Badaoui, K., Zair, T., Amri, J., Chakir, S., & Alaoui, T. (2021). Sélection de quelques plantes médicinales du Zerhoun pour l'activité antibactérienne contre Pseudomonas aeruginosa. Journal of Applied Biosciences, 78, 6685–6693. https://doi.org/10.4314/jab.v78i1.3
Bellary, S., Kyrou, I., Brown, J. E., & Bailey, C. J. (2021). Type 2 diabetes mellitus in older adults: Clinical considerations and management. Nature Reviews Endocrinology, 17, 534–548. https://doi.org/10.1038/s41574-021-00512-2
Brandt, S. L., Putnam, N. E., Cassat, J. E., & Serezani, C. H. (2018). Innate immunity to Staphylococcus aureus: Evolving paradigms in soft tissue and invasive infections. The Journal of Immunology, 200(12), 3871–3880. https://doi.org/10.4049/jimmunol.1701574
Cheesbrough, M. (2009). District laboratory practice in tropical countries. Cambridge University Press.
Cheesbrough, M. (2018). District laboratory practice in tropical countries. International Journal of Medical Science, 1(1), 65–68. https://doi.org/10.32441/ijms.v1i1.47
Doughari, H. J., Ndakidemi, P. A., Human, I. S., & Benade, S. (2011). Virulence factors and antibiotic susceptibility among verotoxic non-O157:H7 Escherichia coli isolates obtained from water and wastewater samples in Cape Town, South Africa. African Journal of Biotechnology, 10(64), 14160–14168. https://doi.org/10.5897/AJB11.1534
Dzoyem, J. P., McGaw, L. J., Kuete, V., & Bakowsky, U. (2017). Anti-inflammatory and anti-nociceptive activities of African medicinal spices and vegetables. In Medicinal spices and vegetables from Africa: Therapeutic potential against metabolic, inflammatory, infectious and systemic diseases (pp. 239–270). Academic Press. https://doi.org/10.1016/B978-0-12-809286-6.00009-1
González-García, S., Hamdan-Partida, A., Bustos-Hamdan, A., & Bustos-Martínez, J. (2021). Factors of nasopharynx that favor the colonization and persistence of Staphylococcus aureus. Pharynx-Diagnosis and Treatment. https://doi.org/10.5772/intechopen.95843
Huang, Y., Xiao, D., Burton-Freeman, B., & Edirisinghe, I. (2016). Chemical changes of bioactive phytochemicals during thermal processing. Reference: Modern Food Science. https://doi.org/10.1016/B978-0-08-100596-5.03055-9
Kaboré, D., Lingani, S. H., Brehima, D., Compaoré, S. C., Dicko, H. M., & Jakobsen, M. (2011). A review of baobab (Adansonia digitata) products: Effects of processing techniques, medicinal properties and uses. African Journal of Food Sciences, 5(16), 833–844. https://doi.org/10.5897/AJFSX11.004
Kohlerschmidt, D. J., Mingle, L. A., Dumas, N. B., & Nattanmai, G. (2021). Identification of aerobic Gram-negative bacteria. In Practical handbook of microbiology (pp. 59–70). CRC Press. https://doi.org/10.1201/9781003099277-7
Magashi, A. M., & Abdulmalik, U. (2018). Antibacterial activity and phytochemical screening of stem bark extracts of Adansonia digitata on some clinical isolates. Umaru Musa Yar'Adua University Journal of Microbiology Research, 3(1), 1–7. https://doi.org/10.47430/ujmr.1831.001
Mahmud, H. S., Oyi, R. A., Allagh, T. S., & Ibrahim, Y. K. E. (2023). Extraction and physicochemical characterization of Adansonia digitata L. mucilage. Nigerian Journal of Pharmaceutical Research, 19(1), 23–25. https://doi.org/10.4314/njpr.v19i1.3
Manyarara, T., Chifamba, J., & Derera, P. (2013). Investigation of the suspending properties of Dicerocaryum zanguebarium and Adansonia digitata mucilage as structured vehicles. International Journal of Science and Research (IJSR), 4(4), 1696-1700. https://www.researchgate.net/profile/Joey-Chifamba-2/publication/379507702_Investigation_of_the_Suspending_Properties_of_Dicerocaryum_Zanguebarium_and_Adansonia_Digitata_Mucilage_as_Structured_Vehicles/links/660c7a1510ca86798736f3d0/Investigation-of-the-Suspending-Properties-of-Dicerocaryum-Zanguebarium-and-Adansonia-Digitata-Mucilage-as-Structured-Vehicles.pdf
Moriel, D. G., Bertoldi, I., Spagnuolo, A., Marchi, S., Rosini, R., & Nesta, B. (2010). Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proceedings of the National Academy of Sciences, 107(20), 9072–9077. https://doi.org/10.1073/pnas.0915077107
Musyoki, J. K., Kaigongi, M. M., Uchi, S. M., Kiama, S. M., Githiomi, J., Muthike, G. M., & Luvanda, A. M. (2022). Distribution and population status of Adansonia digitata L. (baobab) and its contribution to livelihood in Makueni County, Kenya. Trees, Forests and People, 8, 100270. https://doi.org/10.1016/j.tfp.2022.100270
Natheer, S. E., Sekar, C., Amutharaj, P., Abdulrahman, S. M., & Khan, K. F. (2012). Evaluation of antibacterial activity of Morinda citrifolia, Vitex trifolia and Chromolaena odorata. African Journal of Pharmacy and Pharmacology, 6(11), 783–788. https://doi.org/10.5897/AJPP11.435
Nawaz, H., Waheed, R., & Nawaz, M. (2020). Phytochemical composition, antioxidant potential, and medicinal significance of Ficus. IntechOpen. https://doi.org/10.5772/intechopen.86562
Nazneen, R., Riaz, M., Haseebur, R., & Mir, H. (2014). Systematic screening for negative bacilli. Antibacterial drug discovery. Angewandte Chemie International Edition, 53(34), 8840–8869. https://doi.org/10.1002/anie.201310843
Nocera, F. P., Ambrosio, M., Fiorito, F., Cortese, L., & De Martino, L. (2021). On Gram-positive- and Gram-negative-bacteria-associated canine and feline skin infections: A 4-year retrospective study of the University Veterinary Microbiology Diagnostic Laboratory of Naples, Italy. Animals, 11(6), 1603. https://doi.org/10.3390/ani11061603
Ogbeba, J., Iruolaje, F. O., & Dogo, B. A. (2017). Antimicrobial efficacy of Guiera senegalensis and Prosopis africana leaf extract on some bacterial pathogens. European Journal of Biology and Medical Science Research, 5(2), 27–33. [Crossref] https://doi.org/10.9734/JABB/2016/22082
Oyeleke, S. B., & Manga, S. B. (2008). Essentials of laboratory practicals in microbiology. Tobest Publishers.
Ramos, S., Silva, V., Dapkevicius, M. D. L. E., Caniça, M., Tejedor-Junco, M. T., Igrejas, G., & Poeta, P. (2020). Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals, 10(12), 2239. https://doi.org/10.3390/ani10122239
Seth, A. (2011). Antimicrobial and phytochemical analysis of common Indian spices against foodborne pathogens. Advanced BioTechnology, 11(5), 22–27.
Shoba, K. L., Ramachandra, L., Rao, G., Majumdar, S., & Rao, S. P. (2012). Extended spectrum β-lactamase in Gram-negative bacteria and characterization of carbapenem-resistant Enterobacteriaceae isolated from Mulago National Referral Hospital, Uganda. PLoS ONE, 10(8), e0135745. https://doi.org/10.1371/journal.pone.0135745
Tiwari, P., Kumar, B., Kaur, M., Kaur, G., & Kai, H. (2011). Phytochemical screening and extraction: A review. International Pharmaceutica Sciencia, 1(1), 1–7.
Yusha’u, M., Hamza, M. M., & Abdullahi, N. (2010). Antibacterial activity of Adansonia digitata stem bark extracts on some clinical bacterial isolates. International Journal of Biomedical & Health Sciences, 6(3), 129–135.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad, J., Muaz, M., Bako, G. D., Musa, B., Zubair, M. I.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.